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Estimates of the human oral absolute bioavailability were made by using a physiological-based phar-
macokinetic model of absorption and the drug solubility at the gastrointestinal pH range 1.5-7.5, the
apparent permeability (Papp) in Caco-2 cells and the intrinsic clearance (Cli,¢) in human hepatocytes sus-
pensions as major drug related parameters. The predictive ability of this approach was tested in 164
drugs divided in four levels of input data: (i) in vitro data for both Pap, and Cliy; (ii) in vitro data for Cliy
only; (iii) in vitro data for P,,p only and (iv) in silico data for both Pap, and Cliy. In all scenarios, solubility
was estimated in silico. Excellent predictive abilities were observed when in vitro data for both P,,, and
Cline were used, with 84% of drugs with oral bioavailability predictions within a 4- 20% interval of the cor-
rect value. This predictive ability is reduced with the introduction of the in silico estimated parameters,
particularly when Cl; is used. Performance of the model using only in silico data provided 53% of drugs
with bioavailability predictions within a +20% acceptance interval. However, 74% of drugs in the same
scenario resulted in bioavailability predictions within a + 35% interval, which indicates that a qualitative
prediction of the absolute bioavailability is still possible. This approach is a valuable way to estimate a
fundamental pharmacokinetic parameter, using data typically collected in the drug discovery and early
development phases, providing also mechanistic information of the limiting bioavailability steps of the
drug.
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1. Introduction

Oral administration, due to its ease and patient compliance, is
the preferred route and a major goal in the development of new
drug entities. It is also traditionally one of the reasons for either
discontinuation or prolongation of the development time of com-
pounds (Singh, 2006). In this context, and as a consequence of the
large output of molecular synthesis due to combinatorial chemistry,
initial screening of hits in a number of thousands is done typically
by using in silico approaches. In vitro tests are then used to reduce
the number of compounds from hundreds to dozens and in vivo ani-
mal models to 1-5 finally potential drugs that proceed to clinical
trials (Venkatesh and Lipper, 2000). In this process, a large amount
of data are typically produced, many of which never results in a new
drug entity. However, this information, far from being discarded, is
currently used to build many in silico models that may help in the
early screening of new drugs.
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Another currently performed effort is the Integration of data
from all these development phases for the lead selection (Saxena
et al,, 2009). In this regard, physiologically based pharmacokinetic
(PBPK) models are one of the most promising tools (Rowland et al.,
2011), and some examples of their application in the drug develop-
ment are already available (Lupfert and Reichel, 2005; Norris et al.,
2000; Parrott and Lave, 2008; Parrott et al., 2005; Poulin and Theil,
2000; Theil et al., 2003).

Various physiological compartmental models of absorption are
described in the literature (Agoram et al., 2001; Grass, 1997; Huang
et al,, 2009; Yu and Amidon, 1999; Yu et al., 1996b), but consider-
ing the basic structure and the importance of the gastrointestinal
tract (GIT) transit time, it is fair to say that they are all imple-
mentations and optimizations over the Compartmental Absorption
and Transit (CAT) model (Yu et al., 1996b). In its initial form,
CAT model assumed passive absorption, instantaneous dissolution,
linear transfer kinetics for each segment and minor absorption
from the stomach and colon. Although simple assumptions were
considered, this initial approach was able to predict in fair agree-
ment the bioavailability of 10 passively diffused drugs (Yu and
Amidon, 1999). By including Michaelis—Menten kinetics (Yu and
Amidon, 1998), gastric emptying and dissolution (Yu, 1999), the
model applicability was extended for other classes of drugs. Various
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Fig. 1. Structure of the physiologic-based pharmacokinetic model of absorption.

subsequent optimizations were latter made in commercial pack-
ages by including first-pass metabolism and colon absorption -
Gastroplus™ (Agoram et al., 2001), introducing direct physiologic
meaning in the model compartments — iDEA™ (Grass, 1997) and
considering the physiologic heterogeneity of the GIT - SimCyp™
(Di Fenza et al., 2007). If the ability to simulate, within the model
assumptions, the effect of changes in the fundamental drug related
parameters on the pharmacokinetic profile of the drug is unques-
tionable, some efforts have also been made in order to quantify the
predictive ability of these same models in a new drug scenario with
promising results (Cai et al., 2006; De Buck et al., 2007a,b; Parrott
and Lave, 2002; Parrott et al., 2005). However, and specially when
in silico drug parameters are required, due to the proprietary nature
of these commercial packages and the use of internal training sets
for model parameters optimizations, it is difficult to effectively test
the models with “true” external validation data. Additionally, the
complexity of these models may also constrain their applicability
in the early development due to limitations on the available data.

The purpose of this work is to evaluate the use of a simple phys-
iologically based absorption model that describes the fundamental
steps involved in the human oral bioavailability aiming at the initial
phases of drug development where only the fundamental biophar-
maceutical characteristics of the molecules are known or predicted.
Its performance was tested using in vitro data from Caco-2 cells
and suspensions of human hepatocytes. Replacement of these data
sources with in silico derived ones, in a PBPK-QSAR integrative
approach, was tested by considering only drugs that were not pre-
viously used in the internal training and testing processes of the
QSAR model building strategies.

2. Materials and methods
2.1. Model structure

The present model was built on the basis of CAT model (Yu and
Amidon, 1998, 1999) in its integrated form (Yu, 1999) in order to
consider permeability, dissolution and solubility limited absorp-
tion. A parallel model was included to establish the water volume
changes in the GIT. Additionally, a liver compartment was included
to quantify the 1st pass effect on absolute bioavailability (Rowland
et al, 1973). The final structure of the physiologically based

absorption model is presented in Fig. 1. The GIT is divided into
three segments with a series of multiple compartments connected
by linear transfer kinetics from one to the next. The first segment
represents the stomach (subscript S) and consists of a single com-
partment, which is connected to the second segment, that defines
the small intestine, consisting of a sequence of seven compartments
with different volumes but equal residence times (subscripts 1-7).
The final segment, with only one compartment, is related to the
colon (subscript C). Drug, in an immediate release dosage form, is
administered to the stomach with 250 ml of water where it may be
dissolved. Both solid (M}) and soluble drug (Ms) will then undergo
similar gastric emptying rates (ks) and move through the differ-
ent intestinal segments with similar transit time characteristics
(kt). Drug dissolution rate (kp) is defined by the Noyes-Whitney
equation without “sink conditions”. Due to this, and in order to
determine the concentration of dissolved drug, the water content
(V) of the GIT was also modeled. The same segment series were con-
sidered, with transfer kinetics between the compartments similar
to the previously described. Water volume is considered dependent
on the rate of salivary and gastric (R; ), duodenal (R, ) and intestinal
mucous (R3) secretions as well as the intestinal water reabsorption
(kn,0) process. Only dissolved drug is assumed to be absorbable
in the small intestine at a rate defined by ka. All absorbed drug
will pass by the liver where it will be metabolized according to
the “well-stirred” model (Rowland et al., 1973). By calculating the
mass of solid drug reaching the colon, being absorbed and escap-
ing the liver, bioavailability limited by dissolution (Fy), absorption
(Fperm) and metabolization (Fmet) may be determined as well as
absolute bioavailability (F,;, ). The presented model is a typical
case of an initial value problem of a system of differential equa-
tions and was numerically solved by the use of ADAPT Il (D’Argenio
and Schumitzky, 1979; D’Argenio and Schumitzky, 1997).

2.2. Physiological parameters

Physiological parameters of the model used in the present
study are presented in Table 1. Gastric emptying is assumed to
follow first-order kinetics with a mean residence time of 0.25h
(ks=1/0.25h) (Yu and Amidon, 1998). The small intestine transit
time was found to be 3.32h and the 7 compartment model has
shown to be the best compartmental model to depict the small
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Table 1
Physiological parameters used in the pharmacokinetic model.

Transit rate constants

ks=4.00 h-!
kr=2.11 h-1
Intestine radius

rn= 1.70 Cm
r,=1.58 Cm
r;=1.47 Cm
r4=1.37 Cm
rs=1.26 Cm
r6=1.16 Cm
r;=1.05 Cm
Water model parameters

R1=104.2 mlh!
R»=91.70 mlh!
R3=10.70 mlh!
Vs =26.04 ml
V1=7347 ml
V,=58.95 ml
V3=48.05 ml
V4=39.87 ml
V5=33.73 ml
V=29.13 ml
V;=25.67 ml
kiyo = 0.7015 h-!

References for the parameters are provided in Section 2.

intestine transit time distribution (kr=7/3.32h) (Yu et al., 1996a).
Water model was optimized by considering a 24 h secretion of
1000 ml of saliva, 1500 ml of gastric secretions (joint in Ry ), 1000 ml
of pancreatic secretions, 1200 ml of Bile secretion (Joint in Ry) and
1800 ml of intestinal mucus secretion (equally divided in the seven
compartments and considered as R3) (Guyton and Hall, 1996). The
sum of water secretion in the GIT totals 6500 ml day~! and ky,o was
determined by non-linear regression in order to result in a steady-
state amount of reabsorbed water of 5200 mlday~!, corresponding
to a 80% of water reabsorption in the intestine (Vander et al., 2001).
Water volumes of the different compartments — stomach water vol-
ume (Vs) and individual small intestine water volumes (V;-V57) -
are the steady-state volumes for the stated conditions and were
thereafter considered as the initial condition volumes. With the
administration of the drug, it is also administered 250 ml of water as
a bolus directly to the stomach, which results in a temporal change
of the amount of water throughout the GIT.

2.3. Drug related parameters

Specific parameters were introduced in order to describe the
dissolution, absorption and metabolization characteristics of the
different drugs. Although it has long been recognized that during
dissolution a reduction of the particle size occurs (Costa and Sousa
Lobo, 2001) and that this, as well as the shape of the drug parti-
cles (Fukunaka et al., 2006), may influence the rate of dissolution
(Rp), for the sake of simplicity and according to Yu (Yu, 1999), we
considered the Noyes-Whitney equation to described this process

3xDx M(P,i) M(S,i)
Rp = pxhxrp Si— Vi 1)

where D is the diffusion coefficient with a value of 5 x 10~6 cm? s—1,
p is the density of drug with a value of 1200 mg cm~3, h is the dif-
fusion layer thickness that was set to be 30 wm and r, the radius of
the particles, considered constant over time with a value of 50 um
(Yu, 1999). These values were kept constant in all simulations. S;
is the solubility of the drug in the different compartments, taking
into consideration the pH differences that the drug is exposed to
when transiting across the GIT. It is assumed that in stomach pH
1.5. Duodenum (compartment 1 of the small intestine) presents a

pH 4.6, jejunum (compartments 2 and 3) presents a pH 6.5 and
ileum (compartments 4-7) presents a pH 7.5. Bile salts are known
to play an important role in the emulsification and solubilization of
drugs (Wiedmann and Kamel, 2002), and various studies evaluat-
ing the differences in solubility between pH 6.5 buffered solutions
and FaSSIF media for low solubility drugs (log P> 2.5) showed sol-
ubility increases up to 90 times (Fagerberg et al., 2010; Sugano,
2009). Based on this fact, it was considered that drugs with log P
values above 2.5 would be 50 times more soluble in the duode-
num than the drug aqueous solubility at pH 4.5. Additionally, it was
also assumed that when, due to pH changes, the amount of drug
dissolved enters a compartment with lower solubility, a supersat-
urated solution may be formed and no precipitation occurs.

Considering drug absorption in the model, the rate of absorption
(Ra) (Yu and Amidon, 1999) was calculated by,

2 x Pegf

Ra =
A r

x Ms iy (2)
where Per is the drug effective human permeability, Ms is the
mass of dissolved drug in each of the seven individual small intes-
tine compartments and r; is the mean radius for each of the small
intestine individual compartments (Table 1), which was deter-
mined by assuming a linear decrease from 1.75 cm at the proximal
to 1.0 cm at the distal end as well as the described length of the GIT
(Willmann et al., 2004).

The relative amount of drug metabolized in the liver (Ey), and
according to the “well-stirred” model (Rowland et al., 1973), is
defined as,

_ fu,B X Clint
Qu + fu,B x Clip¢

where Qy is the liver blood flow with a physiological value of
81Lh~1; fp is the fraction of unbound drug in blood. For acids, this
parameter was determined by the ratio between the free fraction of
drug in plasma (fy p) and the drug blood-to-plasma concentration
ratio (Ryp). For basic, neutral and zwitterionic drugs f, g was consid-
ered to be equal to 1, according to previous works (Paixao et al.,
2010a; Sohlenius-Sternbeck et al., 2010; Wan et al., 2010). Finally,
Cli; is the hepatic intrinsic clearance of the drug.

En (3)

2.4. S;, Papp and Clyy; datasets

We based our evaluation of the model and its applicability in
predicting human absolute bioavailability on the datasets previ-
ously provided by Paixao et al., 2010a,b. Combination of the two
databases included 405 drugs and drug-like molecules. Within
these molecules, a survey was performed in order to collect rel-
evant pharmacokinetic properties and all drugs with the following
characteristics were removed prior to analysis: CL/F determina-
tion, CL with high variability, liposomal formulations, isomers with
different pharmacokinetics, known metabolization by multiple
organs, CL data obtained in cancer patients, non-linear elimination
pharmacokinetics, pro-drug data, re-conversion of the metabolite,
endogenous substances, unreliable pharmacokinetic data or due
to impossibility to calculate all the required molecular descrip-
tors. A total of 164 drugs complied with the above procedures
and were considered for further analysis. Absolute bioavailabil-
ity, total plasma clearance, fraction of unchanged drug excreted
in urine and plasma protein binding were recorded. Drugs were
also classified by their chemical class based on the in silico pK,
obtained using the on-line ADME Boxes (http://www.pharma-
algorithms.com/webboxes) and considering the most relevant
species at pH 7.4 (Table 2).

Ideally, in vivo solubility, permeability and metabolic activity
data would be used in Egs. (1)-(3) in order to characterize the
drug dependent process on oral bioavailability. In practice, and
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Table 2

Pharmacokinetic data for the 164 drugs used to test the model applicability in predicting the human absolute bioavailability. F,,, is the drug oral bioavailability; fiena is the
percentage of parent drug eliminated in urine; f; is the percentage of drug bound to plasma proteins; Clyjasma is the drug total clearance determined in plasma; Ry, is the
blood to plasma concentration ratio of the drug; In drug class, A stands for acid, B: basic, N: neutral and Z: zwitterionic drug at pH 7.4; Cly is the drug blood hepatic clearance
according to Eqgs. (6) or (7); Faps is the relative amount of drug absorbed according to Eq. (9) and Fpe; the relative amount of drug escaping the liver first-pass effect according
to Eq. (8).

Dl‘Ug Foral frenal fp Clplasm (ml~min71~kg71 ) Rb Dl‘Ug class ClH Fabs Fmet

Acebutolol 037 0.40 0.26 6.8 1.00 B 41 0.46 0.80 (A)
Acetaminophen 0.88 0.30 0.20 5.0 1.04 B 24 1.00 0.88 (B)
Acyclovir 0.30 0.75 0.15 6.2 1.08 N 14 0.32 0.93 (B)
Alendronate 0.02 0.45 0.78 1.1 1.70 z 0.4 0.02 0.98 (B)
Allopurinol 0.90 0.12 0.01 9.9 1.09 N 1.9 1.00 0.90 (B)(C)
Alprazolam 0.88 0.20 0.71 0.7 0.78 N 0.8 0.91 0.96 (B)
Amiodarona 0.46 0.00 1.00 1.9 0.73 B 2.6 0.53 0.87 (B)
Amitriptyline 0.48 0.02 0.95 11.5 0.86 B 10.4 1.00 0.48 (B)
Amlodipine 0.74 0.10 0.93 5.9 1.20 B 4.4 0.95 0.78 (B)
Amoxicillin 0.50 0.86 0.18 2.6 1.04 A 0.4 0.51 0.98 (B)
Antipyrine 1.00 0.95 0.10 1.5 1.00 N 0.1 1.00 1.00 (D) (E)
Aprepitant 0.59 0.00 0.95 1.3 0.60 N 2.1 0.66 0.89 (B) (F)
Atenolol 0.58 0.94 0.05 24 1.07 B 0.1 0.58 0.99 (B)
Benzydamine 0.87 0.55 0.20 23 1.00 B 1.0 0.92 0.95 (G)H)(M)
Bepridil 0.60 0.01 0.99 53 0.67 B 7.8 0.99 0.61 (A)
Betaxolol 0.89 0.15 0.55 4.7 1.00 B 22 1.00 0.89 (A)
Bisoprolol 0.90 0.63 0.35 3.7 1.00 B 14 0.97 0.93 (A)
Bosentan 0.50 0.01 0.98 22 1.00 A 22 0.56 0.89 )
Bromocriptine 0.05 0.02 0.93 5.0 1.00 B 49 0.07 0.76 (A)
Bufuralol 0.46 0.00 0.85 6.2 1.00 B 6.2 0.67 0.69 (K)
Buspirone 0.04 0.00 0.95 283 0.62 B 19.2 1.00 0.04 (B)
Caffeine 1.00 0.01 0.36 14 0.80 N 0.0 1.00 1.00 (A)
Calcitriol 0.61 0.10 1.00 0.4 0.55 N 0.7 0.63 0.96 (B)
Candesartan 0.42 0.52 1.00 0.4 0.55 A 0.3 0.43 0.98 (B)
Carbamazepine 0.70 0.01 0.74 0.9 1.06 N 0.9 0.73 0.96 (B)
Carvedilol 0.25 0.02 0.95 8.7 0.72 B 11.9 0.62 0.41 (B)
Cefixime 0.40 0.41 0.67 13 0.62 A 13 0.43 0.94 (B)
Cephalexin 0.90 0.91 0.14 43 1.02 A 0.4 0.92 0.98 (B)
Cetirizine 0.85 0.71 0.99 0.5 1.00 z 0.2 0.86 0.99 (B)
Chlorpheniramine 0.59 0.10 0.70 1.7 1.34 B 1.1 0.63 0.94 (B)
Chlorpromazine 0.40 0.01 0.97 8.6 0.78 B 109 0.88 0.45 (B)
Chlorprothixene 0.41 0.00 0.99 124 0.81 B 11.8 1.00 0.41 (L)
Chlorthalidone 0.64 0.65 0.75 0.0 0.73 N 0.0 0.64 1.00 (B)
Cimetidine 0.60 0.62 0.19 8.3 0.97 B 33 0.72 0.84 (B)
Cinacalcet 0.25 0.00 0.95 18.0 0.64 B 15.0 1.00 0.25 (B)
Ciprofloxacin 0.60 0.50 0.40 7.6 1.07 z 3.6 0.73 0.82 (B)
Clindamycin 0.53 0.13 0.94 4.7 0.76 B 2.6 0.61 0.87 (B) (M)
Clonidine 0.75 0.62 0.20 3.1 1.04 B 1.1 0.79 0.94 (B)
Clozapine 0.55 0.01 0.95 6.1 1.13 B 5.4 0.75 0.73 (B)
Cyclophosphamide 0.88 0.07 0.13 13 1.06 N 1.1 0.93 0.94 (B)
Dapsone 0.86 0.15 0.73 0.6 1.04 N 0.5 0.88 0.98 (B)
Desipramine 0.38 0.02 0.82 10.0 0.96 B 10.2 0.78 0.49 (A)
Diazepam 1.00 0.01 0.99 0.4 0.58 N 0.7 1.00 0.97 (B)
Diclofenac 0.64 0.01 1.00 4.2 0.56 A 7.2 1.00 0.64 (B)(N)
Dicloxacillin 0.49 0.60 0.96 1.6 0.55 A 1.2 0.52 0.94 (B)
Didanosine 0.38 0.36 0.05 16.0 1.08 N 9.5 0.72 0.52 (B)
Diltiazem 0.38 0.04 0.78 11.8 1.00 B 11.3 0.88 043 (B)
Diphenhydramine 0.72 0.02 0.78 6.2 0.65 B 5.6 1.00 0.72 (B)
Dofetilide 0.96 0.52 0.64 5.2 0.72 B 0.8 1.00 0.96 (B)
Doxycycline 0.93 0.41 0.88 0.5 1.70 z 0.2 0.94 0.99 (B)
Entacapone 0.46 0.00 0.98 10.3 0.55 A 10.8 1.00 0.46 (B)
Ethambutol 0.77 0.79 0.18 8.6 0.96 B 1.9 0.85 0.91 (B)
Etoposide 0.52 0.35 0.96 0.7 0.55 N 0.8 0.54 0.96 (B)
Famotidine 045 0.67 0.17 7.1 1.00 N 23 0.51 0.88 (A)
Finasteride 0.63 0.01 0.90 23 0.56 N 4.1 0.79 0.80 (B)
Flecainide 0.74 0.43 0.61 5.6 0.89 B 3.6 0.90 0.82 (B)
Fluconazole 0.90 0.75 0.11 0.3 1.06 N 0.1 0.90 1.00 (B)
Flumazenil 0.16 0.00 0.40 9.9 1.00 N 9.9 0.32 0.51 (B)
Fluorouracil 0.28 0.10 0.10 16.0 1.09 N 13.2 0.82 0.34 (B)
Fluphenazine 0.03 0.00 0.92 10.0 0.69 B 14.6 0.10 0.27 (B)
Foscarnet 0.09 0.95 0.15 1.6 1.27 A 0.1 0.09 1.00 (B)
Furosemide 0.43 0.66 0.99 2.0 0.55 A 1.2 0.46 0.94 (B)(0)
Gabapentin 0.60 0.66 0.03 1.6 1.10 z 0.5 0.62 0.98 (B)
Galantamine 0.95 0.20 0.18 5.7 1.04 B 1.0 1.00 0.95 (B)
Ganciclovir 0.09 0.91 0.01 34 1.08 N 0.3 0.09 0.99 (B)
Gemfibrozil 0.95 0.01 0.97 1.7 0.55 A 1.0 1.00 0.95 (B)
Glimepiride 1.00 0.01 1.00 0.6 0.55 A 0.0 1.00 1.00 (B)
Glyburide 0.73 0.00 1.00 13 0.56 A 23 0.83 0.88 (B)(P)
Granisetron 0.60 0.16 0.65 11.0 0.86 B 8.0 1.00 0.60 (B)
Hydrochlorothiazide 0.71 0.95 0.58 4.9 1.70 N 0.1 0.72 0.99 (B)
Hydromorphone 0.42 0.06 0.07 14.6 1.07 B 12.8 1.00 0.36 (B)
Ibuprofen 0.80 0.01 0.99 0.6 0.55 A 1.1 0.85 0.95 (B)
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Drug Foral frenal fr Clpjasm (mL.min—".kg1) Ry Drug class Cly Fabs Finet

Imatinib 0.98 0.05 0.95 33 0.64 B 0.4 1.00 0.98 (B)
Imipramine 0.42 0.02 0.90 15.0 1.10 B 11.6 1.00 0.42 (B)
Irbesartan 0.70 0.02 0.90 2.1 0.64 Z 33 0.84 0.84 (B)
Isosorbide dinitrate 0.22 0.01 0.28 46.0 1.00 N 15.6 1.00 0.22 (B)
Isosorbide-5-mononitrate 0.93 0.05 0.00 1.8 1.08 N 1.6 1.00 0.92 (B)
Isradipine 0.17 0.00 0.97 10.0 0.55 N 16.2 0.89 0.19 (A)
Ketoprofen 1.00 0.01 0.99 1.2 1.00 A 0.0 1.00 1.00 (A)
Lamivudine 0.82 0.50 0.36 5.0 1.06 N 2.3 0.93 0.88 (B)
Lansoprazole 0.81 0.01 0.97 6.2 0.56 N 3.8 1.00 0.81 (B)
Letrozole 1.00 0.04 0.60 0.6 0.92 N 0.0 1.00 1.00 (B)
Levetiracetam 1.00 0.66 0.10 1.0 1.07 N 0.3 1.00 0.98 (B)
Levofloxacin 0.99 0.70 0.30 2.5 1.05 z 0.2 1.00 0.99 (B)
Lidocaine 037 0.02 0.70 9.2 0.84 B 10.7 0.80 0.46 (B)
Linezolid 1.00 0.35 0.31 2.1 0.73 N 0.0 1.00 1.00 (B)
Lorazepam 0.93 0.01 0.91 1.1 1.05 N 1.0 0.98 0.95 (B)
Losartan 0.36 0.12 0.99 8.1 0.55 A 129 1.00 0.35 (B)
Meloxicam 0.97 0.01 0.99 0.2 1.22 A 0.1 0.98 0.99 (B)
Melphalan 0.56 0.12 0.90 52 0.96 z 4.8 0.74 0.76 (B)(Q)
Meperidine 0.52 0.05 0.58 17.0 0.87 B 9.6 1.00 0.52 (B)
Mercaptopurine 0.12 0.22 0.19 11.0 1.20 N 7.2 0.19 0.64 (B)
Metformin 0.52 1.00 0.00 7.6 1.04 B 0.0 0.52 1.00 (B)
Methadone 0.86 0.24 0.89 1.7 0.75 B 1.6 0.93 0.92 (B)(R)
Methotrexate 0.70 0.81 0.46 2.1 0.71 A 0.6 0.72 0.97 (B)
Methylprednisolone 0.82 0.05 0.78 6.2 0.78 N 3.6 1.00 0.82 (B)
Metoclopramide 0.76 0.20 0.40 6.2 0.96 B 4.8 1.00 0.76 (B)
Metoprolol 0.38 0.10 0.11 15.0 1.00 B 124 1.00 0.38 (B)
Metronidazole 0.99 0.10 0.11 1.3 1.07 N 0.2 1.00 0.99 (B)
Midazolam 0.44 0.01 0.98 6.6 0.80 N 8.2 0.74 0.59 (B)
Montelukast 0.62 0.00 0.99 0.7 0.55 A 13 0.66 0.94 (B)
Morphine 0.24 0.04 0.35 24.0 0.95 B 15.2 1.00 0.24 (B)
Moxifloxacin 0.86 0.22 0.39 23 1.05 z 1.7 0.94 0.92 (B)
Nadolol 0.34 0.73 0.20 29 1.00 B 0.8 0.35 0.96 (A)
Nalmefene 0.40 0.10 0.34 15.0 1.11 B 12.2 1.00 0.39 (B)
Naloxone 0.02 0.00 0.30 22.0 1.22 B 18.0 0.20 0.10 (B)
Naproxen 0.99 0.01 1.00 0.1 1.00 A 0.1 1.00 0.99 (B)
Nifedipine 0.50 0.00 0.96 7.0 1.63 N 43 0.64 0.79 (B)
Nitrendipine 0.23 0.01 0.98 21.0 0.70 N 15.5 1.00 0.23 (A)(S)
Nitrofurantoin 0.90 047 0.62 9.9 0.76 A 2.0 1.00 0.90 (B)
Nortriptyline 0.56 0.02 0.92 7.2 1.50 B 4.7 0.73 0.76 (B)
Omeprazole 0.71 0.00 0.95 7.5 0.58 N 5.8 1.00 0.71 (A)
Ondansetron 0.62 0.05 0.73 5.9 0.83 B 6.8 0.94 0.66 (B)
Oxazepam 0.97 0.01 0.99 1.1 0.66 N 0.6 1.00 0.97 (A)
Oxycodone 0.42 0.19 0.45 124 1.03 B 9.8 0.82 0.51 (B)
Phenacetin 037 0.40 0.33 20.0 1.01 N 11.9 0.91 0.41 (T)
Phenobarbital 1.00 0.24 0.51 0.1 0.86 N 0.1 1.00 1.00 (B)
Phenytoin 0.90 0.02 0.89 5.9 1.00 N 2.0 1.00 0.90 (B)
Pindolol 0.75 0.54 0.51 8.3 1.00 B 3.8 0.93 0.81 (A)
Pirenzepine 0.33 0.90 0.11 3.8 1.00 B 0.4 0.34 0.98 ) (v)
Pravastatin 0.18 047 0.45 13.5 0.55 A 13.0 0.51 0.35 (B)
Prazosin 0.68 0.04 0.95 3.0 0.70 N 4.1 0.86 0.79 (B)
Prednisone 0.80 0.03 0.75 3.6 1.00 N 3.5 0.97 0.83 (B)
Procainamide 0.83 0.67 0.16 1.7 1.00 B 0.6 0.85 0.97 (B)
Propafenone 0.05 0.01 0.95 17.0 0.70 B 14.0 0.17 0.30 (A)
Propofol 0.00 0.00 0.98 27.0 1.25 N 20.0 1.00 0.00 (B)
Propranolol 0.26 0.01 0.87 16.0 0.89 B 14.8 1.00 0.26 (B)
Quetiapine 0.09 0.01 0.83 19.0 0.90 B 18.2 1.00 0.09 (B)
Quinidine 0.75 0.18 0.87 4.7 0.88 B 44 0.96 0.78 (B)
Quinine 0.76 0.16 0.90 0.9 0.91 B 0.8 0.79 0.96 (B)
Ranitidine 0.52 0.69 0.15 104 1.03 B 3.1 0.62 0.84 (B)
Repaglinide 0.56 0.01 0.97 9.3 0.55 A 8.8 1.00 0.56 (B)
Riluzole 0.60 0.01 0.98 5.5 1.70 N 3.2 0.71 0.84 (B)
Risedronate 0.01 0.87 0.24 1.5 1.07 A 0.2 0.01 0.99 (B)
Risperidone 0.66 0.03 0.89 5.4 0.67 B 6.8 1.00 0.66 (B)
Rizatriptan 047 0.28 0.14 12.3 1.04 B 8.5 0.82 0.57 (B)
Scopolamine 0.29 0.06 0.10 15.5 1.00 B 14.2 1.00 0.29 (W)
Sildenafil 0.40 0.00 0.96 6.0 0.99 N 6.0 0.57 0.70 (B)
Sulfamethoxazole 1.00 0.14 0.53 0.3 0.79 A 0.3 1.00 0.98 (B)
Sulpiride 0.27 0.74 0.00 5.9 1.00 B 1.5 0.29 0.92 (X)
Sumatriptan 0.14 0.22 0.18 22.0 1.03 B 16.7 0.84 0.17 (B)
Tamsulosin 1.00 0.13 0.99 0.6 0.55 B 1.0 1.00 0.95 (B)
Tegaserod 0.11 0.00 0.98 18.0 0.72 B 17.8 1.00 0.11 (B)
Tenoxicam 0.95 0.00 0.99 0.0 0.67 A 0.1 0.95 1.00 (Y)
Terazosin 0.82 0.13 0.92 1.2 0.84 N 1.2 0.87 0.94 (B)
Terbutaline 0.26 0.57 0.23 34 1.00 B 1.5 0.28 0.93 (Z) (AA)
Tetracycline 0.77 0.58 0.65 1.7 1.70 z 0.4 0.79 0.98 (B)
Theophylline 0.96 0.18 0.56 0.7 1.33 N 0.4 0.98 0.98 (B)
Timolol 0.75 0.08 0.10 7.7 0.87 B 4.8 1.00 0.75 (B) (AB)
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Table 2 (Continued)

Drug Foral Srenal fo Clplasm (MLmin=T.kg=") Ry Drug class Cly Fabs Finet
Tolbutamide 0.85 0.00 0.96 0.2 0.55 A 0.4 0.87 0.98 (B)
Tramadol 0.70 0.20 0.20 8.0 1.03 B 6.2 1.00 0.69 (B)
Trazodone 0.81 0.01 0.93 2.1 0.81 N 2.6 0.93 0.87 (B)
Triazolam 0.86 0.02 0.90 2.5 0.62 N 2.8 1.00 0.86 (A)
Trimethoprim 0.63 0.63 0.37 1.9 1.03 N 0.7 0.65 0.97 (B)
Valproic acid 1.00 0.02 0.93 0.1 0.64 A 0.2 1.00 0.99 (B)
Valsartan 0.23 0.29 0.95 0.5 0.55 A 0.6 0.24 0.97 (B)
Verapamil 0.22 0.03 0.90 15.0 0.77 B 15.6 1.00 0.22 (B)
Vinorelbine 0.27 0.11 0.87 21.0 0.58 B 14.6 1.00 0.27 (B)
Vinpocetine 0.57 0.00 0.66 5.2 0.57 B 8.7 1.00 0.57 (AC)
Warfarin 0.93 0.02 0.99 0.1 0.55 A 0.1 0.93 1.00 (B)
Zaleplon 0.31 0.01 0.60 15.7 0.99 N 13.8 1.00 0.31 (B)
Zidovudine 0.63 0.18 0.25 26.0 1.06 N 7.4 1.00 0.63 (B)
Ziprasidone 0.59 0.01 1.00 11.7 0.81 B 8.2 1.00 0.59 (B)
Zolpidem 0.72 0.01 0.92 4.5 0.76 N 5.6 1.00 0.72 (B)

References for the pharmacokinetic data are from (A) Goodman et al. (1996), (B) Goodman et al. (2006), (C) Breithaupt and Tittel (1982), (D) Rimmer et al. (1986), (E) Atiba
et al. (1987), (F) Majumdar et al. (2006), (G) Koppel and Tenczer (1985), (H) Chasseaud and Catanese (1985), (I) Baldock et al. (1991), (J) Weber et al. (1999), (K) Balant et al.
(1980), (L) Raaflaub (1975), (M) Gatti et al. (1993), (N) Hinz et al. (2005), (O) Smith et al. (1980), (P) Neugebauer et al. (1985), (Q) Alberts et al. (1979), (R) Dale et al. (2004),
(S) Mikus et al. (1987), (T) Raaflaub and Dubach (1975), (U) Vergin et al. (1986), (V) Lee et al. (1986), (W) Putcha et al. (1989), (X) Wiesel et al. (1980), (Y) Heintz et al. (1984),
(Z) Fagerstrom (1984), (AA) Nyberg (1984), (AB) Else et al. (1978), (AC) Vereczkey et al. (1979). R, values are from Paixao et al. (2009).

especially in early phases of the lead development, in vivo data are
not available and extrapolations or allometric scaling approaches
are typically used. In our study, we used both in silico and in vitro
based estimations of permeability and metabolic activity. Since a
complete pH solubility profile was needed for each drug and these
data were not available for the majority of the drugs, only in sil-
ico estimations of solubility were used. In all cases, and taking in
consideration the well described solubility/dose effect on bioavail-
ability (Benet et al., 2011; Rinaki et al., 2003; Takagi et al., 2006),
the studied doses (Tables 3-6) were the largest that are described
for clinical practice (Ritschel, 2000).

In silico estimated solubility values were obtained using
the on-line ADME Boxes (http://www.pharma-algorithms.com/
webboxes) considering the “In buffer solubility” option and the pH
values of the stomach, duodenum, jejunum and ileum. In a recent
paper testing the predictive performance of various in silico solu-
bility models in a new data set of 122 drugs, ADME Boxes presented
59% of well predicted drugs within 0.5 log unit of measured value
and a standard error of 0.62 log values (Dearden, 2006).

In order to estimate the effective permeability of the different
drugs in the GIT, both in silico and in vitro apparent permeabil-
ities values based on the Caco-2 cell system were used. In vitro
values were collected in the literature, under similar exper-
imental conditions, namely, experimental pH values ranging
from 6.8 to 7.4, with low to median passage numbers (28-46)
and typically at a cell age close to 21 days. For drugs without
in vitro data available, an in silico ANN model was used (Paixao
et al, 2010b). This model was based on calculated molecular
descriptors for a total of 296 in vitro Caco-2 apparent permeability
(Papp) drug values also collected in the literature. The model
presented correlations of 0.843 and 0.702 and a root mean square
error (RMSE) of 0.546 and 0.791 for the train (N=192) and test
(N=59) group respectively. An external validation step was also
performed with an additional group of 45 drugs resulting in a
correlation of 0.774 and RMSE of 0.601. Papp values were used to
estimate the effective human permeability (Pes) by performing
a multiple linear regression, based on 29 reference drugs with
known human effective permeability, resulting in the equation
log(Pegr)(cmh=1)=0.932+0.763 x log(Papp)(cmh~1)+0.0324 x RBN
(RBN being the number of rotable bonds in the molecule) and
presenting an r=0.887 and RMSE =.301 (Fig. 2).

To estimate the in vivo hepatic intrinsic clearance both in silico
and in vitro intrinsic clearance (Cl;,;) values based on suspensions
of human hepatocytes were used. In vitro Cl;,; values were obtained
from published studies on drug metabolism in human hepatocytes

using the substrate depletion method in absence of added serum.
For drugs without in vitro data available, an in silico ANN model
was again used (Paixao et al., 2010a). This ANN model was built
based only on calculated molecular descriptors and 89 in vitro Cl,;
values. Data were divided into a train group of 71 drugs for network
optimization and a test group of another 18 drugs for early-stop and
internal validation resulting in correlations of 0.953 and 0.804 for
the train and test group, respectively. The external validation was
made with another 112 drugs by comparing the in silico predicted
Cl;,¢ with the in vivo Cl;,, estimated by the “well-stirred” model
based on the in vivo hepatic clearance (Cly ). Acceptable correlations
were observed with r values of 0.508 and 63% of drugs within a 10-
fold difference when considering blood binding in acidic drugs only.
In order to scale the in silico and in vitro Cl;,; values to the in vivo
Cliye, hepatocellularity was considered to be 107 x 10 cellg=1 liver
(Wilson et al., 2003) and it was also assumed that liver weighed
20gkg~! of body weight.

To test the applicability of the PBPK based absorption model,
data from Table 2 were grouped in terms of Papp and Cl;,; source.
In vitro data for both Ppp and Cli,, were available for 49 drugs
(Table 3). In vitro data for Cl;,; only were available for 25 drugs
(Table 4). In vitro data for P,pp only were available in another 22
drugs (Table 5). For the remaining 68 drugs, in silico based data
were used (Table 6).

1,0

log{P¢) Predicted (cm/h)

-2,0 : :
-2,0 -1,0 0,0 1,0
log(P.¢) Observed (cm/h)

Fig. 2. Relationship between the predicted logarithm of the effective human jejunal
permeability by the multiple linear regression and the in vivo observed values.
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Table 3
Drug parameters and predicted bioavailability by the pharmacokinetic model for the 49 drugs with In vitro data for both Py, and Cliy.
Drug Data parameters Observed  Predicted
Invitro Cline ~ In vitro Pegs Foral (%) Si pH 4.6 Si pH 6.5 SipH7.5 Dose max Foral (%) Fq Fperm  Fmet Foral (%)
(Lh™) (cmh™) (mg/ml)  (mg/ml)  (mg/ml)  (mg)

Acebutolol 16.18 0.21 106.40 106.40 106.40 21.23 200 37 1.00 0.62 083 51
Acetaminophen 6.97 1.96 7.58 7.58 7.58 7.58 2000 88 1.00 1.00 092 92
Antipyrine 4.22 1.87 19.71 14.95 14.95 14.95 600 100 1.00 1.00 095 95
Atenolol 0.90 0.12 923.64 923.64 923.64 473.70 50 58 1.00 043 099 42
Betaxolol 22.47 1.80 82.76 4138 82.76 15.77 40 89 1.00 1.00 078 78
Bosentan 13.48 0.19 0.00 0.02 0.01 0.06 600 50 0.08 043 0.99 3
Bromocriptine 332.56 0.20 17.22 860.98 17.22 217 5 5 1.00 0.61 020 12
Caffeine 21.12 1.70 31.50 31.50 31.50 31.50 350 100 1.00 1.00 079 79
Carbamazepine 12.58 2.03 0.04 0.04 0.04 0.04 200 70 062 094 086 51
Chlorpromazine 72.49 1.55 3.50 174.83 2.78 0.36 100 40 1.00 0.99 053 52
Cimetidine 10.79 0.24 390.91 390.91 390.91 310.51 400 60 1.00 0.66 088 58
Clozapine 53.93 1.73 179.62 1055 0.29 0.06 150 55 1.00 1.00 060 60
Desipramine 62.92 0.95 59.64 2982 59.64 40.32 50 38 1.00 0.97 056 55
Diazepam 10.08 1.92 2.26 0.07 0.07 0.07 15 100 1.00 1.00 089 89
Diclofenac 395.47 143 0.03 3.81 4.09 30.31 50 64 1.00 0.99 096 95
Diltiazem 116.84 2.60 16.89 16.89 0.87 0.13 120 38 1.00 1.00 041 41
Famotidine 0.90 0.15 1019 16.15 0.29 0.11 40 45 1.00 0.51 099 50
Furosemide 0.09 0.06 0.29 3.98 194.77 630.27 40 43 1.00 0.24 1.00 24
Ibuprofen 37.75 1.91 0.06 8.38 9.01 58.15 800 80 1.00 1.00 099 99
Imipramine 71.90 0.68 28.05 1402 23.87 3.01 200 42 1.00 0.94 053 50
Ketoprofen 22.47 227 0.02 3.19 3.35 25.43 200 100 1.00 1.00 099 99
Lidocaine 120.44 3.05 575.33 575.33 66.06 12.88 750 37 1.00 1.00 040 40
Methylprednisolone 87.18 0.89 0.08 0.08 0.08 0.08 24 82 099 094 048 45
Metoprolol 62.92 2.68 558.70 558.70 558.70 217.36 100 38 1.00 1.00 056 56
Morphine 215.71 0.60 22028 11014 87.69 13.27 30 24 1.00 0.92 027 25
Nadolol 0.90 0.14 759.61 759.61 692.77 245.80 120 34 1.00 049 099 48
Naloxone 714.55 1.41 568.97 568.97 45.20 7.85 20 2 1.00 0.99 010 10
Naproxen 35.95 1.53 0.18 27.62 27.06 148.68 250 99 1.00 0.99 099 99
Nitrendipine 66.51 1.28 0.27 0.09 0.09 0.09 20 23 1.00 0.98 055 54
Ondansetron 12.58 2.52 40.50 2025 2.28 0.32 8 62 1.00 1.00 087 86
Oxazepam 17.98 2.87 0.03 0.81 0.02 0.02 25 97 097 1.00 082 79
Phenytoin 26.47 1.93 0.16 0.16 0.16 0.18 300 90 099 097 075 73
Pindolol 25.17 1.76 2213 2213 1567 988.74 20 75 1.00 1.00 076 76
Pirenzepine 0.90 0.07 1976 734.28 37.66 5.83 10 33 1.00 0.29 099 29
Prazosin 20.67 0.58 541.64 171.28 4.40 1.84 5 68 1.00 091 080 72
Propofol 961.72 1.18 0.21 10.47 0.21 0.21 1 0 1.00 0.98 0.08 8
Propranolol 116.84 2.04 48299 24149 482.99 175.36 80 26 1.00 1.00 041 41
Quinidine 49.43 1.02 893.64 893.64 67.79 10.50 400 75 1.00 0.98 062 61
Ranitidine 8.99 0.14 1505 703.99 38.69 5.59 150 52 1.00 049 090 44
Scopolamine 62.92 1.11 1076 1076 152.06 35.65 0.5 29 1.00 0.98 056 55
Sildenafil 46.74 2.70 2795 368.45 947 2.86 50 40 1.00 1.00 063 63
Sulpiride 0.09 0.06 304.34 304.34 76.45 11.31 100 27 1.00 0.25 1.00 25
Terbutaline 0.09 0.12 1006 1006 528.20 196.25 5 26 1.00 043 1.00 43
Theophylline 4.49 1.34 17.61 17.61 18.02 18.02 400 96 1.00 0.99 095 94
Tolbutamide 9.71 3.50 0.19 0.24 4.00 28.31 500 85 1.00 1.00 099 99
Valproic acid 4.40 1.98 2.95 4.46 83.00 262.47 500 100 1.00 1.00 099 99
Verapamil 269.64 2.49 8.66 433.18 3.45 0.44 120 22 1.00 1.00 023 23
Warfarin 9.89 1.76 0.20 16.52 10.45 69.03 6 93 1.00 1.00 1.00 99
Zidovudine 28.77 0.76 15.74 15.74 15.74 15.74 350 63 1.00 0.95 074 70

2.5. Statistical and pharmacokinetic analysis

Since bioavailability values range from 0% and 100%, correla-
tion between the predicted and observed values was determined by
means of the Spearman rank correlation coefficient (rs) for the four
groups of data. In order to assess the precision and bias of the model,
RMSE and mean error (ME), respectively, were also calculated by
using the following equations.

E (Fpred - Fobs )2
N

Z(Fpred - Fobs)
N

RMSE = (4)

ME = (5)

Percentage of correct values within an absolute +20% margin
error was determined in order to test the quantitative ability of
the model to predict absolute bioavailability. Additionally, percent-
age of correct values within a4 35% error was also determined in

order to test the qualitative predictive ability of the model. A mul-
tifactor ANOVA analysis was also performed, in order to establish
the effect of data origin (in silico vs in vitro) for Papp and Cliy, as
well as differences from the different drug classes (acidic, basic,
neutral and zwitterionic) on the oral bioavailability prediction,
assessed by the squared residuals between predicted and observed
values.

In vivo Cly values from Table 2 drugs were determined by using
Eq. (6) (Naritomi et al., 2003),

plasma
Cly = t;;tal x (1~ frenat) (6)
b

This equation assumes that total blood clearance, determined by
the ratio between the described total plasma clearance (CL{’;?;lma)
to the drug blood-to-plasma concentration ratio (Ry,), is the sum of
Hepatic and Renal Clearance, the last being determined by using
the fraction of drug eliminated by the kidneys (fiena ). Some drugs,
however, may have other non renal elimination routes besides the
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Table 4
Drug parameters and predicted bioavailability by the pharmacokinetic model for the 25 drugs with In vitro data for Cliy; only.
Drug Data parameters Observed  Predicted
Invitro Cliye  In silico Pegr SipH 1.5 SipH 4.6 Si pH 6.5 SipH7.5 Dose max Foral (%) Fq Fperm  Fiet Foral (%)
(Lh™") (cmh™) (mg/ml)  (mg/ml)  (mg/ml)  (mg/ml)  (mg)

Benzydamine 184.40 0.92 269.52 13476 19.52 2.46 5 87 1.00 0.97 031 30
Bepridil 17.98 1.87 220.90 11045 6.67 0.88 200 60 1.00 1.00 082 82
Bisoprolol 14.38 0.87 527.90 52790 527.90 178.88 10 90 1.00 0.96 085 82
Bufuralol 62.92 2.37 75.39 3769 41.43 5.85 60 46 1.00 1.00 056 56
Carvedilol 314.58 0.79 4.07 203.26 0.13 0.02 125 25 1.00 0.95 020 20
Cetirizine 0.90 0.39 42.65 0.42 0.37 0.47 10 85 1.00 0.81 099 81
Chlorpheniramine 25.17 1.39 1045 52242 315.54 73.97 4 59 1.00 0.99 0.76 76
Chlorprothixene 125.83 2.27 3.02 150.84 1.20 0.15 100 41 1.00 1.00 039 39
Diphenhydramine 53.93 1.56 286.55 14328 97.10 16.11 44 72 1.00 0.99 060 60
Gemfibrozil 197.74 1.02 0.08 6.42 3.46 25.62 600 95 1.00 0.98 088 86
Granisetron 80.89 145 1059 1059 431.31 110.86 1 60 1.00 0.99 050 50
Isradipine 161.78 3.36 0.14 0.05 0.05 0.05 5 17 0.98 1.00 033 33
Lorazepam 5.71 1.52 0.02 0.61 0.01 0.01 2 93 0.98 0.99 093 91
Midazolam 106.28 1.57 17.10 4.38 0.00 0.00 10 44 1.00 0.99 043 43
Nifedipine 59.77 1.51 0.62 0.21 0.21 0.21 10 50 1.00 0.99 058 57
Nortriptyline 24.63 1.08 13.20 660.09 13.20 6.77 125 56 1.00 0.98 077 75
Omeprazole 15.28 3.53 165.35 0.74 0.46 0.48 20 71 1.00 1.00 084 84
Phenacetin 67.41 1.72 1.36 1.36 1.36 1.36 1000 37 1.00 1.00 055 54
Prednisone 87.18 1.44 0.11 0.11 0.11 0.11 10 80 1.00 0.99 048 48
Procainamide 11.68 0.72 1076 1076 438.28 135.44 1000 83 1.00 0.94 087 82
Propafenone 517.71 0.51 121.17 6058 121.17 24.74 150 5 1.00 0.89 014 12
Tenoxicam 23.37 3.07 0.49 0.51 8.67 58.64 20 95 1.00 1.00 1.00 100
Triazolam 14.29 1.35 8.23 0.57 0.00 0.00 0.25 86 1.00 0.99 085 84
Vinpocetine 2336.88 0.37 78.47 3923 11.61 1.57 20 57 1.00 0.80 0.03 3
Zolpidem 32.27 2.45 172.88 1016 0.50 0.28 10 72 1.00 1.00 072 71

hepatic one. In these cases, it is expected that Cly determined by
Eq. (6) would be over predicted. To minimize this, in vivo Cly was
also determined by Eq. (7) (Iwatsubo et al., 1997),

CLy = Qu x (1 = Fyral)

This equation assumes that oral bioavailability (Fy, ) is only a
result of the first pass-effectin the liver, allowing the determination

(7)

bigger the latter prevails. For these drugs, the relative amount of
drug escaping the first-pass effect (Fmet) is equal to Fg, result-
ing that the relative amount of drug absorbed (F,,s) presents a
value of 1. For the remaining drugs, Fnet Was determined by using
Eq. (8),

Cl
Fmetz]_ (J)

o (8)

of the liver extraction ratio (Ey) and the Cly by multiplying Ey with
the hepatic blood flow rate (Qy) with a value of 20 mImin—! kg~1.
Although Eq. (7) could also provide over predicted values for
Cly, in theory these would be the maximum possible values

And F,, including both the effect of in vivo solubility and in vivo
permeability, was determined by using Eq. (9),

for this parameter. For this reason, when comparing Cly deter- Furo — Foral (9)

mined by Eq. (6) to the value obtained with Eq. (7), if the first is S T et

Table 5

Drug parameters and predicted bioavailability by the pharmacokinetic model for the 22 drugs with In vitro data for P, only.
Drug Data parameters Observed Predicted

In silico In vitro Peg SipH1.5 SipH4.6 SipH6.5 SipH7.5 Dosemax  Fu (%) Fq Fperm  Fmet  Foral (%)
Cline (Lh™")  (emh™1) (mg/ml)  (mg/ml)  (mg/ml) (mg/ml) (mg)

Acyclovir 30.79 0.14 23.05 5.79 5.79 5.92 400 30 1.00 048 072 35
Amoxicillin 7.77 0.09 2.65 0.30 0.34 6.65 3000 50 087 0.28 093 23
Cephalexin 16.81 0.08 1.03 0.14 0.16 0.32 500 90 0.66 0.30 085 17
Ciprofloxacin 3.83 0.17 208.80 9.39 1.56 135 500 60 1.00 0.55 095 53
Clonidine 191.67 1.51 148.57 7429 6.05 0.96 0.1 75 1.00 0.99 030 30
Doxycycline 0.03 0.86 46.54 1.25 1.20 1.22 100 93 1.00 0.96 1.00 96
Etoposide 333.91 0.24 0.07 0.07 0.07 0.07 100 52 0.51 0.60 0.20 6
Fluconazole 0.78 1.34 7.52 1.50 1.50 1.50 200 90 1.00 0.99 099 98
Foscarnet 0.01 0.01 457.51 1414 1414 1414 560 9 1.00 0.05 1.00 5
Gabapentin 3.89 0.00 24193 7.48 6.51 6.51 600 60 1.00 0.01 0.95 1
Ganciclovir 0.94 0.09 26.12 9705 9705 9705 1000 9 1.00 035 099 34
Hydrochlorothiazide 13.15 0.11 0.94 0.94 0.96 0.99 12.5 71 1.00 042 0.86 36
Losartan 35.79 0.19 2.93 0.42 0.01 0.08 50 36 1.00 0.59 099 59
Meloxicam 4.52 1.31 7.18 0.73 41.29 226.91 15 97 1.00 0.99 1.00 99
Metformin 0.01 0.10 873.50 873.50 873.50 873.50 500 52 1.00 0.39 1.00 39
Methotrexate 0.01 0.19 0.50 0.01 0.13 0.97 50 70 1.00 0.57 1.00 57
Pravastatin 0.86 0.35 0.05 0.14 6.89 51.05 20 18 1.00 0.77 099 77
Sulfamethoxazole 1.00 1.04 1.42 0.68 4.61 29.76 1000 100 1.00 097 1.00 97
Sumatriptan 17.46 0.26 725.24 725.24 501.75 144.71 100 14 1.00 0.69 082 57
Tetracycline 0.05 0.23 137.36 434 4.15 4.24 250 77 1.00 0.65 1.00 65
Timolol 11.45 1.30 1231 1231 1149 549.98 20 76 1.00 0.99 0.88 87
Trimethoprim 26.44 235 290.36 187.47 4.20 1.03 160 63 1.00 1.00 075 75
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Drug parameters and predicted bioavailability by the pharmacokinetic model for the 68 drugs with only in silico based data.

Drug Data parameters Observed Predicted
In silico Insilico Peg  SipH1.5 SipH4.6 SipHG6.5 SipH7.5 Dosemax  Fy (%) Fq Fperm  Fmet  Foral (%)
Cline (Lh71) (cmh-T) (mg/ml)  (mg/ml)  (mg/ml) (mg/ml)  (mg)

Alendronate 0.03 0.01 463.88 292.69 292.69 292.69 70 2 1.00 0.04 1.00 4
Allopurinol 2.89 2.96 3.05 3.05 3.05 3.05 300 90 1.00 1.00 097 97
Alprazolam 27.52 1.66 0.09 0.35 0.01 0.01 4.5 88 031 099 075 23
Amiodarona 109.31 9.10 0.33 16.55 0.05 0.01 400 46 1.00 1.00 043 43
Amitriptyline 76.65 0.84 5.41 270.48 2.15 0.28 100 48 1.00 096 0.51 49
Amlodipine 7.26 0.85 564.47 564.47  145.09 23.53 10 74 1.00 096 092 88
Aprepitant 114.69 2.75 10.18 1.31 0.00 0.00 125 59 1.00 1.00 041 41
Buspirone 20.15 1.54 1932 17182 8.63 1.64 20 4 1.00 0.99 0.80 80
Calcitriol 8.64 4.99 0.01 0.33 0.01 0.01 0.0042 61 090 1.00 090 81
Candesartan 30.67 2.62 0.07 0.04 0.02 0.14 16 42 1.00 099 1.00 98
Cefixime 0.05 0.02 1.19 222 130.79 557.93 200 40 1.00 023 1.00 23
Chlorthalidone 3.40 2.04 0.02 0.02 0.02 0.02 50 64 063 094 096 57
Cinacalcet 13.68 2.21 1.18 59.18 037 0.05 75 25 1.00 1.00 086 85
Clindamycin 114.78 0.73 996.41 996.41 75.59 15.43 150 53 1.00 095 041 39
Cyclophosphamide 7.20 0.73 32.87 32.87 32.87 32.87 50 88 1.00 095 092 387
Dapsone 0.01 0.42 0.08 0.05 0.05 0.05 100 86 051 0.73 1.00 37
Dicloxacillin 414.94 0.05 0.14 604.51 481.32 540.05 2000 49 1.00 023 073 17
Didanosine 12.28 2.00 15.25 11.57 11.57 11.84 400 38 1.00 1.00 0.87 87
Dofetilide 7.05 043 384.64 285.14 5.56 0.80 0.55 96 1.00 0.85 092 78
Entacapone 66.46 0.23 1.08 1.08 1.76 6.53 400 46 1.00 066 097 64
Ethambutol 18.25 0.56 1952 1952 1447 955.86 800 77 1.00 090 0.82 74
Finasteride 7247 4.22 0.03 1.74 0.03 0.03 5 63 1.00 1.00 0.53 53
Flecainide 5.26 1.03 104.09 5204 70.37 9.94 100 74 1.00 098 094 92
Flumazenil 88.89 0.78 0.87 0.44 0.44 0.44 200 16 1.00 095 048 45
Fluorouracil 288.30 1.49 6.99 6.99 7.32 8.80 1050 28 1.00 099 022 22
Fluphenazine 41.20 3.35 234.99 2512 0.71 0.12 12 3 1.00 1.00 066 66
Galantamine 1.90 0.77 673.71 673.71  244.61 51.11 12 95 1.00 095 098 93
Glimepiride 75.25 0.20 0.05 3.16 1.05 7.96 3 100 1.00 0.60 0.99 60
Glyburide 40.59 0.13 0.01 0.88 0.29 2.21 3 73 1.00 047 099 47
Hydromorphone 137.61 0.85 668.97 668.97  211.55 42.21 4 42 1.00 096 037 36
Imatinib 139.77 1.20 2058 2412 0.65 0.12 400 98 1.00 099 037 36
Irbesartan 4.74 0.28 2.36 2.09 0.02 0.02 50 70 1.00 0.72 094 68
Isosorbide Dinitrate 88.48 037 0.92 0.92 0.92 0.92 20 22 1.00 0.80 048 38
Isosorbide-5-mononitrate 0.88 0.32 195.61 195.61 195.61 195.61 20 93 1.00 0.76 099 75
Lamivudine 23.00 0.22 741.97 22.93 14.14 14.14 100 82 1.00 0.63 0.78 49
Lansoprazole 8.30 5.01 97.16 19.34 0.24 0.25 15 81 1.00 1.00 091 91
Letrozole 11.77 3.45 0.46 4.62 0.09 0.09 2.5 100 1.00 1.00 087 87
Levetiracetam 2.10 0.86 60.40 60.40 60.40 60.40 500 100 1.00 096 097 94
Levofloxacin 206.33 0.56 610.17 19.38 1.66 1.44 500 99 1.00 0.90 028 25
Linezolid 9.29 0.31 35.96 1.50 1.44 1.44 600 100 1.00 075 090 67
Melphalan 82.59 0.58 14.28 412 412 421 25 56 1.00 091 050 45
Meperidine 56.04 2.58 566.69 28334 149.06 28.40 20 52 1.00 1.00 0.59 59
Mercaptopurine 0.02 4.77 0.57 0.57 0.61 0.92 100 12 1.00 1.00 1.00 100
Methadone 63.77 3.03 23.48 1174 2.96 0.39 10 86 1.00 1.00 056 56
Metoclopramide 82.87 0.62 788.66 788.66  193.59 36.05 20 76 1.00 092 049 46
Metronidazole 50.77 1.13 62.15 15.98 15.98 15.98 100 99 1.00 098 061 60
Montelukast 269.11 0.05 0.01 0.06 0.00 0.02 10 62 0.56 0.18 094 10
Moxifloxacin 51.35 227 139.21 0.58 0.02 0.02 400 86 1.00 1.00 0.61 61
Nalmefene 88.56 0.98 100.18 5009 7.96 1.10 50 40 1.00 0.97 048 47
Nitrofurantoin 147.73 0.40 0.10 0.10 0.11 0.19 50 90 1.00 0.78 035 27
Oxycodone 349.39 1.39 722.54 72254  161.76 31.54 5 42 1.00 099 0.19 19
Phenobarbital 2.55 0.73 0.44 0.44 0.49 0.79 90 100 1.00 094 097 92
Quetiapine 124.58 4.53 1241 21028 12.41 2.53 250 9 1.00 1.00 039 39
Quinine 27.95 2.68 893.64 44682 67.79 10.50 700 76 1.00 1.00 074 74
Repaglinide 57.24 0.06 0.72 033 0.01 0.06 4 56 1.00 026 097 25
Riluzole 494.00 1.81 52.44 9.97 0.12 0.12 50 60 1.00 1.00 014 14
Risedronate 0.01 0.01 214.78 2466  214.78 503.48 5 1 1.00 006 1.00 6
Risperidone 142.81 4.06 593.41 17471 8.19 1.16 3 66 1.00 1.00 036 36
Rizatriptan 15.73 0.90 1072 1072 309.30 72.51 10 47 1.00 097 0.84 381
Tamsulosin 67.17 0.67 219.42 219.42 46.91 6.63 0.4 100 1.00 093 055 51
Tegaserod 0.96 0.50 81.13 81.13 81.13 67.48 6 11 1.00 0.88 0.99 87
Terazosin 23.96 0.66 510.81 150.75 3.70 1.54 1 82 1.00 093 0.77 72
Tramadol 19.77 3.02 692.87 34643 692.87 479.35 100 70 1.00 1.00 080 80
Trazodone 5.22 221 1176 6448 3.17 1.32 100 81 1.00 1.00 094 94
Valsartan 23.60 0.06 0.03 82.80 106.92 477.60 80 39 1.00 026 097 26
Vinorelbine 1154.79 1.95 1004 14809 4.92 0.65 170 27 1.00 100 007 7
Zaleplon 31.82 3.40 0.35 0.20 0.20 0.20 10 31 1.00 1.00 072 72
Ziprasidone 168.26 0.79 180.27 1216 033 0.06 20 59 1.00 096 033 31




P. Paixdo et al. / International Journal of Pharmaceutics 429 (2012) 84-98 93

100 e B Jama
A L ) / ~ Y
° ,-"" ®
e
80 + / & /qu
-~ . °
e 7
) . e
£ 601 > e .
D e S a® o
kil // o O _{/.
T . ] o
% 40 + b [ @ O// methy
i S -
// ° //
d (] *
20 F i
7
°® Ve
® o
0 o z ® bosen :
0 20 40 60 80 100
F observed (%)
CIOO /” ¢
.‘!'
A e
80 + prava //
[ ] (/ Y /"
A
- P ®
° -
S 601 .// s
9 sumat. b L
% i [ ) P
3 A rd
5 401 -~ °
. [ ] f'/ L e hd
// 7 clonig
a"f /
20 Pl cepha
il e
-
° e €0P0 @ gahap
(] T : * ;
1] 20 40 60 80 100
F observed (%)

B 100
80
o)
S 60 -
-
2
2
3
£ 4014
L
20
0 .// . @ yinpo s
0 20 40 60 80 100
F observed (%)
D 100 =merca ® cande /-‘
P
® tegas @ (inac ® didan /.f" ®
80 1 @ buspi . ¢ o
R zalep ‘_./ q.""
L) pd L I
_ ® fluph P -
g 60+ e /IO me
< s ° glime
% -~ P tamsugp
T < o
7]
L 40 - dapso
o
w 4 * ima®
ni d
levol
L]
20 alpra
® monte
0+ } + t t
0 20 40 60 80 100
F observed (%)

Fig. 3. Plot of the in vivo observed bioavailability vs. the model predicted bioavailability by the PBPK model of absorption using: (A) in vitro data for both P,p, and Clin¢; (B)
in vitro data for Cliy; only; (C) in vitro data for P,pp only; (D) in silico data for both Pp, and Cliy,. Solid line represents the line of unity and the dashed line the £20% absolute

tolerance. Drugs outside the +35% absolute tolerance value are also labeled.

For drugs presenting a prediction error outside the £20% thresh-
old value, an evaluation of the probable cause of failure was made
based on the comparison of the in vivo F,ps and Frye (Table 2) with
the model predictions on the individual drugs Fq, Fperm and Fmet
values (Tables 3-6). Since in vivo Fy and Fperm could not be sep-
arated, when the predicted Fyq x Fperm were significantly different
(£20%) from the in vivo F,p, an individual bibliographic survey was
undertaken for the establishing of the probable cause for prediction
failure within absorption.

3. Results
3.1. Prediction using in vitro data

The first evaluation of the presented methodology was made
based on absorption and biotransformation data obtained from
in vitro experiments for the drugs from Table 3. Fig. 3A) presents
the relationship between the observed and the predicted oral
bioavailabilities for the 49 drugs in this data set. A correlation of
rs=0.824 (0.706-0.897 CI95%) was observed with a RMSE =16.0%
and a ME=1.9%. The model was able to predict 84% of data within
the accepted +20% error interval and 96% of data lies within
the +35% error margin, thus showing excellent qualitative and

quantitative prediction capabilities. When evaluating the possible
reasons for predictions outside the accepted £20% error interval,
solubility was responsible for one case (Bosentan), Papp was respon-
sible for another one case (Sildenafil) and Cl;,; was responsible for
the remaining 6 cases (Caffeine, Diclofenac, Methylprednisolone,
Nitrendipine, Ondansetron and Scopolamine) of badly predicted
drugs.

3.2. Prediction using in silico Pgpp Caco-2 values

When considering drugs from Table 4, for which only in vitro
Clj¢ data were available, the model was tested by including in sil-
ico predicted P;pp values to characterize the drug absorption phase.
Fig. 3B) presents the relationship between the observed and the
predicted oral bioavailabilities for the 25 drugs in this data set. A
correlation of rs=0.718 (0.450-0.867 CI95%) was observed with a
RMSE =19.8% and a ME = —2.7%. The model was able to predict 84%
of data within the accepted +20% error interval and 92% of data
within the £35% error interval, indicating again excellent qualita-
tive and quantitative prediction capabilities. Again, the evaluation
of the possible reasons for predictions outside the accepted +20%
error interval indicated that none of the drugs presented solubil-
ity or in silico Papp related estimation problems. In vitro Clj,; was
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responsible for the observed four cases (Benzydamine, Bepredil,
Prednisone and Vinpocetine) of badly predicted drugs.

3.3. Prediction using in silico Cl;,; hepatocytes values

For the drugs from Table 5, only in vitro P,pp data were available.
In this case, the model was tested by including in silico predicted
Cl;¢ values to characterize the drug metabolization in the liver.
Fig. 3C) presents the relationship between the observed and the
predicted oral bioavailability for the 22 drugs in this data set. A
correlation of rs=0.532 (0.142-0.779 CI95%) was observed with a
RMSE =31.9% and a ME = —6.7%. The model resulted in 55% of data
well predicted within the accepted +£20% error and 73% of data
within the +35% error margin, indicating acceptable quantitative
but good qualitative prediction capabilities. Solubility was respon-
sible for two cases (Cephalexin and Ganciclovir) of drugs outside
the accepted £20% error interval. In vitro Papp was responsible for
8 drugs (Amoxicillin, Cephalexim, Etoposide, Gabapentin, Ganci-
clovir, Hydrochlorothiazide, Losartan and Pravastatin) and in silico
Cl;,¢ was responsible for another five cases (Clonidine, Etoposide,
Losartan, Pravastatin and Sumatriptan) of badly predicted drugs. As
mentioned above, some drugs were badly predicted due to more
than one drug related parameter.

3.4. Prediction using in silico data

For the remaining drugs, included in Table 6, only in silico
Papp and Cli,, data were used. Fig. 3D) presents the relation-
ship between the observed and the predicted oral bioavailability
for the 68 drugs in this data set. As expected, due to the
increase prediction variability of the added in silico models, a weak
but statistically significant correlation of rs=0.284 (0.049-0.489
CI95%) was observed with a RMSE=34.6% and a ME=-4.5%.
The model resulted in 53% of data well predicted within the
accepted 4+20% error but still was able to predict 74% of data
within the +35% error. In this scenario, solubility was responsi-
ble for two drugs (Alprazolam and Dapsone) outside the accepted
+20% error interval. In silico Papp was responsible for 12 cases
(Candesartan, Dapsone, Dicloxacillin, Flumazenil, Fluphenazine,
Glimepiride, Glyburide, Lamivudine, Linezolid, Mercaptopurine,
Montelukaste and Repaglinide) and Clj,; was responsible for
another 22 drugs (Buspirone, Cinacalcet, Didanosine, Fluphenazine,
Imatinib, Levofloxacin, Mercaptopurine, Methadone, Metoclo-
pramide, Metronidazole, Moxifloxacin, Nitrofurantoin, Oxycodone,
Quetiapine, Repaglinide, Riluzole, Risperidone, Rizatriptan, Tam-
sulosin, Tegaserod, Zaleplon and Ziprasidone with low prediction
accuracy).

4. Discussion
4.1. Model structure

We used an oral bioavailability compartmental model, based on
the CAT model, which considers gastric and intestinal transit time,
solubility, permeability and hepatic metabolism, as primary condi-
tionings of drug bioavailability. Although some important factors
were not considered, namely the effect of the GIT drug transporters,
drug degradation in the GIT lumen, enterocyte metabolization, to
name a few, the considered drug characteristics are expectably the
main factors to limit bioavailability for the majority of drugs. How-
ever, since Caco-2 cells present both metabolization and transport
systems (Vogel, 2006) these mechanisms may be included in the
permeability estimation by the Caco-2 cells, if Papp values were
collected outside the saturation zone and the drugs present pro-
portional dose absorption.

In order to characterize drug dissolution in the GIT, it is neces-
sary to consider the water volume in each compartment. With this
purpose, a water model was built based on the described daily rates
of secretions in the different parts of the GIT as well as the described
percentage of water reabsorption in the small intestine. The sum
of the model steady-state values for the small intestine total a vol-
ume of 308 ml, which is in agreement with the in vivo experimental
value of 165 ml (range 25-350 ml) (Marciani et al., 2007). Addition-
ally, the calculated water absorption rate constant, with a value
of 0.7015h™1 (P.r=1.7 x 10~4 cms~1) is also consistent with the
experimental water (D;0) Pef values of 1.4 and 2.4 x 10~4cms™!
under diffusion and convective conditions in humans (Fagerholm
etal., 1999).

The absorption rate of the drugs was assumed to follow first
order kinetics and dependent on the jejunal effective permeabil-
ity (Pefr). Since Caco-2 apparent permeabilities (Papp) were used as
estimators of Pegf, @ multiple linear regression model, using Caco-2
Papp values and RBN, was built to relate these parameters. Previous
authors had used simple linear relationships with variable success
(Parrott and Lave, 2002, 2008; Sun et al., 2002). However, this may
notreflect the fact that, if highly permeable drugs would most likely
be absorbed in the upper part of the villus, low permeability drugs
are likely to diffuse throughout the intervillous space and will have
access to the majority of the absorptive area (Lennernas, 1998;
Palm et al., 1996). The RBN descriptor, since it is also related to the
molecular weight, can account for the difference in surface area
that exists, due to the lack of villus on Caco-2 cell, between Caco-2
cells and the human intestine for low permeability drugs. Another
described morphophysiological difference between Caco-2 and the
intestinal epithelia is the larger density of tight junctions presented
in Caco-2 (Collett et al., 1997). This fact implies that, for drugs with
important paracellular absorption, Caco-2 would under predict the
actual in vivo value. RBN, that counts the number of bonds in the
molecule that allow a free rotation around themselves and is a mea-
sure of the flexibility of the molecule, can also compensate this
effect.

Metabolization of the drug was assumed to occur primarily at
the liver, and the “well-stirred” model was used to simulate that
organ. The choice of liver model does not seem to significantly
influence the Cly predictive capacity both when using rat isolated
microsomes and hepatocytes suspensions (Ito and Houston, 2004).
There is no significant difference for low metabolized drugs when
using the “well-stirred”, the “parallel tube” or the “dispersion”
models and, for the sake of simplicity and minor differences in the
prediction on in vivo Cly, the “Well-Stirred” model can be used for
Cly prediction (Houston and Carlile, 1997; Ito and Houston, 2004,
2005). Use of f is also a question of debate, with various studies
indicating that the non-inclusion of this parameter in basic, zwit-
terionic and neutral drugs resulted in improved Cly estimations
both when using microsomes (Obach, 1999) or hepatocytes sus-
pensions (Jacobson et al., 2007; Lau et al., 2002; McGinnity et al.,
2004; Reddy et al., 2005). In a previous study, considering 30 drugs
with in vitro Clj,; data from human hepatocytes suspensions, we
also observed better in vivo Cl;,; predictions with increased preci-
sion (RMSE 0.643 vs 1.042), less bias (ME —0.073 vs —0.838) and
increased number of compounds predicted within 2-fold (52% vs
16%) when neglecting fg for basic, neutral and zwitterionic drugs
in comparison with the inclusion of fg for all drug classes (Paixao
etal., 2010a).

4.2. Drug parameters

An important drug specific parameter involved in dissolution
is the drug solubility in the GIT medium. This may depend on a
variety of factors, such as pH, surfactant, buffer capacity and ionic
strength that are difficult to simulate in vitro (Takano et al., 2006).
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As an approximation we used in silico intrinsic water solubility
and the effect of pH in the drug ionization, and by consequence
in its solubility, at the GIT pH values using ADME Boxes. Addition-
ally, various authors have indicate a relationship between drug
lipophilicity and its increased solubility in the presence of bile
salts (Mithani et al., 1996; Wiedmann and Kamel, 2002; Wiedmann
etal.,2002), and a linear relationship was shown between log P and
the micelle/aqueous partition coefficient in vitro (Wiedmann et al.,
2002). However different bile salts interact with drugs with differ-
ent affinities (Atanackovic et al., 2009) and human intestinal fluids
show large variations with regard to composition, which is known
to influence the solubility of poorly soluble drugs in alog Pindepen-
dent manner (Klebergetal.,2010). In this context, and for simplicity
issues, the surfactant effect was introduced by empirically consid-
ering that drugs with log Pvalues above 2.5 would be 50 times more
soluble in the duodenum than the drug aqueous solubility at pH 4.5.
Finally, there is the possibility of drug precipitation when the dis-
solved drug transits from one compartment to the next due to pH
and water volume changes in the GIT. However, Box. (Box et al.,
2006) identified that about 95% of the acids and 75% of the bases
they studied by using a potentiometric procedure to establish the
aqueous solubility, were capable to form supersaturated solutions.
In this context, it was assumed that no precipitation occurs. Parrott
et al. (2005) using Gastroplus™ without adjusted solubility for bile
salt solubilization, observed that 27 of 29 compounds with low sol-
ubility, presented their bioavailability under predicted. In our case,
although simple approximations were made, only 3.04% of drugs
presented bad predictions due to solubility questions.

In order to quantify the drug absorption process, permeabil-
ity data collected in Caco-2 cells were used. This cell system
is a widely performed in vitro test with interesting properties
when extrapolating results to bioavailability. Caco-2 cells, which
are polarized epithelial cells, can form a differentiated monolayer
that resembles the morphological and biochemical characteristics
of the human intestinal epithelium (Vogel, 2006). Additionally,
a sigmoid relationship between the Papp across Caco-2 cells and
the fraction absorbed in humans has been shown for passively
absorbed drugs (Stenberg et al.,, 2001). Although similar gene
expression was observed between Caco-2 cells and the human
duodenum, around 17% of gene sequences presented at least a
5-fold difference in expression (Sun et al., 2002). Due to this,
extrapolating Papp Caco-2 values for drugs absorbed by carrier
mediated mechanisms or subject to important metabolic degra-
dation at the enterocyte is more difficult. For this reason, we used
in vitro Caco-2 data describing mainly the passive diffusion mecha-
nism of absorption (Paixao et al., 2010b) which resulted in around
86% of drugs with correct absorption predictions within the +20%
threshold value (combining Tables 3 and 5 data), although some
of the badly predicted drugs, like Cephalexin or Gabapentin, were
indeed substrates of transporters. These results were also observed
with the in silico based P,pp Caco-2 data. In this case (combining
Tables 4 and 6 data), 86% of drugs presented correct absorption pre-
dictions and were not considered statistically different (p <0.4175)
from the in vitro derived ones by the ANOVA analysis, indicating
that the used in silico model is a valid alternative to the in vitro
model in the lead development phase when in vitro data are not
available.

Table 7

To characterize the first-pass effect at the liver, we used in
vitro data obtained in suspensions of isolated human hepatocytes
(Paixao et al., 2010a). Hepatocytes are intact cells with a complete
set of phase I and Il metabolizing enzymes that mimic the in vivo
metabolization of drugs (Gomez-Lechon et al., 2003). Additionally,
the presence of uptake and efflux transporters is also an important
characteristic of this cell system with relevance in the drug metab-
olization process (Hewitt et al., 2007). With the optimization of the
cryopreservation protocols, an increased pool of liver sources is
now available with a minimal loss of metabolic activity (Blanchard
et al., 2005; Griffin and Houston, 2004; McGinnity et al., 2004). Due
to these facts, it appears to be the most promising tool to predict Cly
in the development phase of new drug entities (Fagerholm, 2007).
Our results confirm that using in vitro data from this model (com-
bining Tables 3 and 4 data) is suitable to predict the first-pass effect,
with around 88% of drugs with correct predictions. When using the
in silico model (combining data from Tables 5 and 6), lower and a
statistically significant difference (p <0.0011) in the prediction abil-
ity was observed, with around 71% of drugs with correct predictions
within the +20% threshold value. This value improved, however,
to around 81% of drugs with correct predictions when the +35%
threshold value was considered making this model still a valid tool
in drug discovery and development. Overall, no statistically signif-
icant differences were observed between the different drug classes
(p<0.8437).

4.3. Model performance

The model statistical performance under the four studied
scenarios is presented in Table 7. As expected, the model best per-
formance in predicting human bioavailability was obtained when
using only in vitro Papp and Cli, data. In this scenario, 84% of good
predictions within the £20% acceptance range were observed with
the lower RMSE of all the simulations. Parrott and Lave (2002) eval-
uated the performance of two commercial packages (Gastroplus™
and iDEA™) in predicting the absorbable fraction in 28 drugs. A
RMSE of 22% was described for both models, larger than the RMSE
value obtained in our data considering the complete bioavailabil-
ity process. De Buck et al. (2007b) in a retrospective analysis of
16 clinically tested drugs and using Gastroplus™ with in vitro
Papp Caco-2 (n=13), in silico Papp Caco-2 (n=3) and in vitro Cliy;
determined in human and rat microsomes and hepatocytes sus-
pensions obtained an average fold error of 1.06 and a RMSE of
15%, similar to the present results. Cai et al. (2006) evaluated an
integrated in vitro — PBPK model to predict human bioavailability
of another 16 drugs. Cl;,; was determined in human hepatocytes
suspensions, and the absorption data were obtained from the
literature and in-house reports. Their method outperformed the
commercial package iDEA™ with 69% vs. 63% of good predictions
within the +20% accepted range and RMSE =19% vs. RMSE =25%.
Our work, as well as these reports, indicates that in vitro data
obtained in Caco-2 and Human hepatocytes suspensions, when
used in various PBPK models of absorption, are capable of provid-
ing statistically relevant predictions of the drug bioavailability in
humans.

It is frequent in the lead development, that not all the in vitro
data are available at some time of the discovery phase. Additionally,

Statistical comparison of the performance of the pharmacokinetic model based on the introduction of the different data sources.

In vitro PappIn vitro Cline

In silico PappIn vitro Clin

In vitro Pappln silico Cliy In silico PappIn silico Cliy

Ts 0.824 0.718
RMSE (%F) 16.0 19.8
ME (%F) 1.9 -2.7
%Correct values within +20% 83.7 84.0

%Correct values within + 35% 95.9 92.0

0.532 0.284
31.9 34.6
-6.7 -4.5
54.5 52.9
72.7 73.5
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in the beginning of the new drug discovery process, pure in sil-
ico methods are frequently used (Venkatesh and Lipper, 2000). We
tested the ability of the proposed method to predict human oral
bioavailability in the typical discovery pipeline, when all data are
not yet available.

The second situation explored considers that in vitro Clj,; in
human hepatocytes suspensions data are available, but only in sil-
ico estimates of Papp, in Caco-2 are possible to be used. In this case
an ANN model, presenting a correlation of 0.774 and RMSE of 0.601
log values in a validation group of 45 drugs, was used (Paixao et al.,
2010Db). Using these inputs, the PBPK model presented 84% of good
predictions within the +20% accepted range and a RMSE of 19.8%.
De Buck et al. (2007a), using in vitro Cl;,; determined in rat micro-
somes, in silico Papp values and Gastroplus™, obtained a RMSE
of 32.1 and 63.3% of values within a 2-fold error when predict-
ing the rat oral bioavailability. Parrott et al. (Parrott et al., 2005)
when evaluating the utility of PBPK models in early drug discovery,
using in vitro Papp in PAMPA, in vitro Cli, in rat hepatocytes and
Gastroplus™, obtained a RMSE of 31% and a r of 0.40 when pre-
dicting the rat oral bioavailability. Although different species were
considered, ourinsilico Papp model provided better prediction capa-
bilities than theses models, even when in vitro PAMPA P, data are
considered.

The third situation explored considers that in vitro P,pp Caco-2
data are available, but only in silico estimates of Cl;,; in human hep-
atocytes suspensions are possible to be used. In this case an ANN
method, able to predict 63% of in vivo Cli,, within a 10-fold error
in a validation group of 112 drugs, was used (Paixao et al., 2010a).
When introduced in the proposed PBPK Model, 55% of good predic-
tions within the +£20% accepted range and a RMSE of 31.9% were
obtained. Although some in silico approaches to predict metabolic
clearances are emerging (Sheikh-Bahaei and Hunt, 2011; Yu, 2010),
the used ANN model for Cl;,; predictions is the only described in
silico model to predict the metabolization of drugs in human hep-
atocytes suspensions, limiting the comparisons with other works.

The final situation explored considers that no in vitro data
are available, simulating the initial situation in the drug develop-
ment process. When introducing only in silico derived data in the
proposed PBPK Model, 53% of good predictions within the +20%
accepted range and a RMSE of 34.6% was obtained. A low correla-
tion of rs =0.284 was also obtained. This result was expected due to
the increase of the predictive error presented in the in silico mod-
els, that combined in the PBPK model, resulted in a poor ability
to quantitatively predict the Human oral bioavailability. Consider-
ing, however, that the model resulted also in 74% of correct values
within a &+ 35% error, which is sufficient to the establishment of the
qualitative class of absorption, indicates that this approach can still
be used for the early candidate selection. Yoshida and Topliss (2000)
developed a QSAR model for human oral bioavailability classifica-
tion that was able to correctly predict the class of absorption of 24
in 40 drugs (60% success). Our model, with similar classification
rates, provides in addition a mechanistic information concerning
the reason for the drug limited absorption.

5. Conclusions

The presented methodology, a PBPK model of absorption
considering drug dissolution and absorption in the GIT and drug
metabolization in the liver, is a convenient approach to predict and
characterize the human oral bioavailability in the early drug devel-
opment process. When based on in silico drug solubility, and both
in vitro absorption and metabolization data, it was able to correctly
establish the oral bioavailability for the vast majority of the studied
drugs. Inclusion of in silico permeability provided similar prediction
abilities when compared with the in vitro derived data. However,

the use of in silico metabolization data degraded the model perfor-
mance. If the absorption process seems to be sufficiently predicted
based only on the molecular structure of the drug, in silico pre-
diction of the metabolization rate, in spite of the initial modeling
efforts, is still prone to improvement. However, qualitative estab-
lishment of oral bioavailability was still statistically possible, which
indicates that this modeling approach may be an important tool in
the drug discovery pipeline, allowing the refinement of its predic-
tions and indicating lines of investigation in order to improve the
overall success rate of lead development.
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