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a  b  s  t  r  a  c  t

Estimates  of  the human  oral  absolute  bioavailability  were  made  by  using  a physiological-based  phar-
macokinetic  model  of  absorption  and  the  drug  solubility  at the  gastrointestinal  pH range  1.5–7.5,  the
apparent  permeability  (Papp)  in Caco-2  cells  and  the  intrinsic  clearance  (Clint) in  human  hepatocytes  sus-
pensions  as major  drug  related  parameters.  The  predictive  ability  of  this  approach  was  tested  in  164
drugs divided  in  four  levels  of  input  data:  (i)  in  vitro  data  for  both  Papp and  Clint;  (ii)  in  vitro  data  for  Clint

only;  (iii)  in  vitro data  for Papp only  and  (iv)  in  silico  data  for both  Papp and  Clint. In  all  scenarios,  solubility
was estimated  in  silico.  Excellent  predictive  abilities  were  observed  when  in  vitro  data  for  both  Papp and
Clint were  used,  with  84%  of  drugs  with  oral  bioavailability  predictions  within  a  ±  20%  interval  of  the  cor-
rect  value.  This  predictive  ability  is reduced  with  the  introduction  of  the  in  silico  estimated  parameters,
particularly  when  Clint is used.  Performance  of  the  model  using  only  in  silico  data provided  53%  of  drugs
uman absolute bioavailability with  bioavailability  predictions  within  a  ±  20%  acceptance  interval.  However,  74%  of  drugs  in  the  same
scenario  resulted  in  bioavailability  predictions  within  a  ±  35%  interval,  which  indicates  that  a qualitative
prediction  of  the  absolute  bioavailability  is  still  possible.  This  approach  is  a valuable  way  to estimate  a
fundamental  pharmacokinetic  parameter,  using  data  typically  collected  in  the  drug  discovery  and  early
development  phases,  providing  also  mechanistic  information  of  the  limiting  bioavailability  steps  of  the
drug.
. Introduction

Oral administration, due to its ease and patient compliance, is
he preferred route and a major goal in the development of new
rug entities. It is also traditionally one of the reasons for either
iscontinuation or prolongation of the development time of com-
ounds (Singh, 2006). In this context, and as a consequence of the

arge output of molecular synthesis due to combinatorial chemistry,
nitial screening of hits in a number of thousands is done typically
y using in silico approaches. In vitro tests are then used to reduce
he number of compounds from hundreds to dozens and in vivo ani-

al  models to 1–5 finally potential drugs that proceed to clinical
rials (Venkatesh and Lipper, 2000). In this process, a large amount
f data are typically produced, many of which never results in a new
rug entity. However, this information, far from being discarded, is

urrently used to build many in silico models that may  help in the
arly screening of new drugs.
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Another currently performed effort is the Integration of data
from all these development phases for the lead selection (Saxena
et al., 2009). In this regard, physiologically based pharmacokinetic
(PBPK) models are one of the most promising tools (Rowland et al.,
2011), and some examples of their application in the drug develop-
ment are already available (Lupfert and Reichel, 2005; Norris et al.,
2000; Parrott and Lave, 2008; Parrott et al., 2005; Poulin and Theil,
2000; Theil et al., 2003).

Various physiological compartmental models of absorption are
described in the literature (Agoram et al., 2001; Grass, 1997; Huang
et al., 2009; Yu and Amidon, 1999; Yu et al., 1996b),  but consider-
ing the basic structure and the importance of the gastrointestinal
tract (GIT) transit time, it is fair to say that they are all imple-
mentations and optimizations over the Compartmental Absorption
and Transit (CAT) model (Yu et al., 1996b). In its initial form,
CAT model assumed passive absorption, instantaneous dissolution,
linear transfer kinetics for each segment and minor absorption
from the stomach and colon. Although simple assumptions were
considered, this initial approach was  able to predict in fair agree-

ment the bioavailability of 10 passively diffused drugs (Yu and
Amidon, 1999). By including Michaelis–Menten kinetics (Yu and
Amidon, 1998), gastric emptying and dissolution (Yu, 1999), the
model applicability was  extended for other classes of drugs. Various
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Fig. 1. Structure of the physiologic-ba

ubsequent optimizations were latter made in commercial pack-
ges by including first-pass metabolism and colon absorption –
astroplusTM (Agoram et al., 2001), introducing direct physiologic
eaning in the model compartments – iDEATM (Grass, 1997) and

onsidering the physiologic heterogeneity of the GIT – SimCypTM

Di Fenza et al., 2007). If the ability to simulate, within the model
ssumptions, the effect of changes in the fundamental drug related
arameters on the pharmacokinetic profile of the drug is unques-
ionable, some efforts have also been made in order to quantify the
redictive ability of these same models in a new drug scenario with
romising results (Cai et al., 2006; De Buck et al., 2007a,b; Parrott
nd Lave, 2002; Parrott et al., 2005). However, and specially when
n silico drug parameters are required, due to the proprietary nature
f these commercial packages and the use of internal training sets
or model parameters optimizations, it is difficult to effectively test
he models with “true” external validation data. Additionally, the
omplexity of these models may  also constrain their applicability
n the early development due to limitations on the available data.

The purpose of this work is to evaluate the use of a simple phys-
ologically based absorption model that describes the fundamental
teps involved in the human oral bioavailability aiming at the initial
hases of drug development where only the fundamental biophar-
aceutical characteristics of the molecules are known or predicted.

ts performance was tested using in vitro data from Caco-2 cells
nd suspensions of human hepatocytes. Replacement of these data
ources with in silico derived ones, in a PBPK-QSAR integrative
pproach, was tested by considering only drugs that were not pre-
iously used in the internal training and testing processes of the
SAR model building strategies.

. Materials and methods

.1. Model structure

The present model was built on the basis of CAT model (Yu and
midon, 1998, 1999) in its integrated form (Yu, 1999) in order to
onsider permeability, dissolution and solubility limited absorp-

ion. A parallel model was included to establish the water volume
hanges in the GIT. Additionally, a liver compartment was  included
o quantify the 1st pass effect on absolute bioavailability (Rowland
t al., 1973). The final structure of the physiologically based
harmacokinetic model of absorption.

absorption model is presented in Fig. 1. The GIT is divided into
three segments with a series of multiple compartments connected
by linear transfer kinetics from one to the next. The first segment
represents the stomach (subscript S) and consists of a single com-
partment, which is connected to the second segment, that defines
the small intestine, consisting of a sequence of seven compartments
with different volumes but equal residence times (subscripts 1–7).
The final segment, with only one compartment, is related to the
colon (subscript C). Drug, in an immediate release dosage form, is
administered to the stomach with 250 ml  of water where it may  be
dissolved. Both solid (Mp) and soluble drug (Ms) will then undergo
similar gastric emptying rates (ks) and move through the differ-
ent intestinal segments with similar transit time characteristics
(kT). Drug dissolution rate (kD) is defined by the Noyes–Whitney
equation without “sink conditions”. Due to this, and in order to
determine the concentration of dissolved drug, the water content
(V) of the GIT was also modeled. The same segment series were con-
sidered, with transfer kinetics between the compartments similar
to the previously described. Water volume is considered dependent
on the rate of salivary and gastric (R1), duodenal (R2) and intestinal
mucous (R3) secretions as well as the intestinal water reabsorption
(kH2O) process. Only dissolved drug is assumed to be absorbable
in the small intestine at a rate defined by kA. All absorbed drug
will pass by the liver where it will be metabolized according to
the “well-stirred” model (Rowland et al., 1973). By calculating the
mass of solid drug reaching the colon, being absorbed and escap-
ing the liver, bioavailability limited by dissolution (Fd), absorption
(Fperm) and metabolization (Fmet) may  be determined as well as
absolute bioavailability (Foral). The presented model is a typical
case of an initial value problem of a system of differential equa-
tions and was numerically solved by the use of ADAPT II (D’Argenio
and Schumitzky, 1979; D’Argenio and Schumitzky, 1997).

2.2. Physiological parameters

Physiological parameters of the model used in the present
study are presented in Table 1. Gastric emptying is assumed to

follow first-order kinetics with a mean residence time of 0.25 h
(ks = 1/0.25 h) (Yu and Amidon, 1998). The small intestine transit
time was  found to be 3.32 h and the 7 compartment model has
shown to be the best compartmental model to depict the small
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Table  1
Physiological parameters used in the pharmacokinetic model.

Transit rate constants
ks = 4.00 h−1

kT = 2.11 h−1

Intestine radius
r1 = 1.70 Cm
r2 = 1.58 Cm
r3 = 1.47 Cm
r4 = 1.37 Cm
r5 = 1.26 Cm
r6 = 1.16 Cm
r7 = 1.05 Cm

Water model parameters
R1 = 104.2 ml  h−1

R2 = 91.70 ml  h−1

R3 = 10.70 ml  h−1

Vs = 26.04 ml
V1 = 73.47 ml
V2 = 58.95 ml
V3 = 48.05 ml
V4 = 39.87 ml
V5 = 33.73 ml
V6 = 29.13 ml
V7 = 25.67 ml
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kH2O = 0.7015 h−1

eferences for the parameters are provided in Section 2.

ntestine transit time distribution (kT = 7/3.32 h) (Yu et al., 1996a).
ater model was optimized by considering a 24 h secretion of

000 ml  of saliva, 1500 ml  of gastric secretions (joint in R1), 1000 ml
f pancreatic secretions, 1200 ml  of Bile secretion (Joint in R2) and
800 ml  of intestinal mucus secretion (equally divided in the seven
ompartments and considered as R3) (Guyton and Hall, 1996). The
um of water secretion in the GIT totals 6500 ml  day−1 and kH2O was
etermined by non-linear regression in order to result in a steady-
tate amount of reabsorbed water of 5200 ml  day−1, corresponding
o a 80% of water reabsorption in the intestine (Vander et al., 2001).

ater volumes of the different compartments – stomach water vol-
me  (Vs) and individual small intestine water volumes (V1–V7) –
re the steady-state volumes for the stated conditions and were
hereafter considered as the initial condition volumes. With the
dministration of the drug, it is also administered 250 ml  of water as

 bolus directly to the stomach, which results in a temporal change
f the amount of water throughout the GIT.

.3. Drug related parameters

Specific parameters were introduced in order to describe the
issolution, absorption and metabolization characteristics of the
ifferent drugs. Although it has long been recognized that during
issolution a reduction of the particle size occurs (Costa and Sousa
obo, 2001) and that this, as well as the shape of the drug parti-
les (Fukunaka et al., 2006), may  influence the rate of dissolution
RD), for the sake of simplicity and according to Yu (Yu, 1999), we
onsidered the Noyes–Whitney equation to described this process

D = 3 × D × M(P,i)

� × h × rp

(
Si − M(S,i)

Vi

)
(1)

here D is the diffusion coefficient with a value of 5 × 10−6 cm2 s−1,
 is the density of drug with a value of 1200 mg  cm−3, h is the dif-

usion layer thickness that was set to be 30 �m and rp the radius of
he particles, considered constant over time with a value of 50 �m
Yu, 1999). These values were kept constant in all simulations. Si

s the solubility of the drug in the different compartments, taking
nto consideration the pH differences that the drug is exposed to

hen transiting across the GIT. It is assumed that in stomach pH
.5. Duodenum (compartment 1 of the small intestine) presents a
Pharmaceutics 429 (2012) 84– 98

pH 4.6, jejunum (compartments 2 and 3) presents a pH 6.5 and
ileum (compartments 4–7) presents a pH 7.5. Bile salts are known
to play an important role in the emulsification and solubilization of
drugs (Wiedmann and Kamel, 2002), and various studies evaluat-
ing the differences in solubility between pH 6.5 buffered solutions
and FaSSIF media for low solubility drugs (log P > 2.5) showed sol-
ubility increases up to 90 times (Fagerberg et al., 2010; Sugano,
2009). Based on this fact, it was considered that drugs with log P
values above 2.5 would be 50 times more soluble in the duode-
num than the drug aqueous solubility at pH 4.5. Additionally, it was
also assumed that when, due to pH changes, the amount of drug
dissolved enters a compartment with lower solubility, a supersat-
urated solution may  be formed and no precipitation occurs.

Considering drug absorption in the model, the rate of absorption
(RA) (Yu and Amidon, 1999) was calculated by,

RA = 2  × Peff

ri
× M(S,i) (2)

where Peff is the drug effective human permeability, M(S,i) is the
mass of dissolved drug in each of the seven individual small intes-
tine compartments and ri is the mean radius for each of the small
intestine individual compartments (Table 1), which was  deter-
mined by assuming a linear decrease from 1.75 cm at the proximal
to 1.0 cm at the distal end as well as the described length of the GIT
(Willmann et al., 2004).

The relative amount of drug metabolized in the liver (EH), and
according to the “well-stirred” model (Rowland et al., 1973), is
defined as,

EH = fu,B × Clint

QH + fu,B × Clint
(3)

where QH is the liver blood flow with a physiological value of
81 L h−1; fu,B is the fraction of unbound drug in blood. For acids, this
parameter was determined by the ratio between the free fraction of
drug in plasma (fu,P) and the drug blood-to-plasma concentration
ratio (Rb). For basic, neutral and zwitterionic drugs fu,B was  consid-
ered to be equal to 1, according to previous works (Paixao et al.,
2010a; Sohlenius-Sternbeck et al., 2010; Wan  et al., 2010). Finally,
Clint is the hepatic intrinsic clearance of the drug.

2.4. Si, Papp and Clint datasets

We based our evaluation of the model and its applicability in
predicting human absolute bioavailability on the datasets previ-
ously provided by Paixao et al., 2010a,b. Combination of the two
databases included 405 drugs and drug-like molecules. Within
these molecules, a survey was performed in order to collect rel-
evant pharmacokinetic properties and all drugs with the following
characteristics were removed prior to analysis: CL/F determina-
tion, CL with high variability, liposomal formulations, isomers with
different pharmacokinetics, known metabolization by multiple
organs, CL data obtained in cancer patients, non-linear elimination
pharmacokinetics, pro-drug data, re-conversion of the metabolite,
endogenous substances, unreliable pharmacokinetic data or due
to impossibility to calculate all the required molecular descrip-
tors. A total of 164 drugs complied with the above procedures
and were considered for further analysis. Absolute bioavailabil-
ity, total plasma clearance, fraction of unchanged drug excreted
in urine and plasma protein binding were recorded. Drugs were
also classified by their chemical class based on the in silico pKa

obtained using the on-line ADME Boxes (http://www.pharma-
algorithms.com/webboxes) and considering the most relevant

species at pH 7.4 (Table 2).

Ideally, in vivo solubility, permeability and metabolic activity
data would be used in Eqs. (1)–(3) in order to characterize the
drug dependent process on oral bioavailability. In practice, and

http://www.pharma-algorithms.com/webboxes


P. Paixão et al. / International Journal of Pharmaceutics 429 (2012) 84– 98 87

Table  2
Pharmacokinetic data for the 164 drugs used to test the model applicability in predicting the human absolute bioavailability. Foral is the drug oral bioavailability; frenal is the
percentage of parent drug eliminated in urine; fp is the percentage of drug bound to plasma proteins; Clplasma is the drug total clearance determined in plasma; Rb is the
blood  to plasma concentration ratio of the drug; In drug class, A stands for acid, B: basic, N: neutral and Z: zwitterionic drug at pH 7.4; ClH is the drug blood hepatic clearance
according to Eqs. (6) or (7);  Fabs is the relative amount of drug absorbed according to Eq. (9) and Fmet the relative amount of drug escaping the liver first-pass effect according
to  Eq. (8).

Drug Foral frenal fp Clplasm (ml.min−1.kg−1) Rb Drug class ClH Fabs Fmet

Acebutolol 0.37 0.40 0.26 6.8 1.00 B 4.1 0.46 0.80 (A)
Acetaminophen 0.88 0.30 0.20 5.0 1.04 B 2.4 1.00 0.88 (B)
Acyclovir 0.30 0.75 0.15 6.2 1.08 N 1.4 0.32 0.93 (B)
Alendronate 0.02 0.45 0.78 1.1 1.70 Z 0.4 0.02 0.98 (B)
Allopurinol 0.90 0.12 0.01 9.9 1.09 N 1.9 1.00 0.90 (B) (C)
Alprazolam 0.88 0.20 0.71 0.7 0.78 N 0.8 0.91 0.96 (B)
Amiodarona 0.46 0.00 1.00 1.9 0.73 B 2.6 0.53 0.87 (B)
Amitriptyline 0.48 0.02 0.95 11.5 0.86 B 10.4 1.00 0.48 (B)
Amlodipine 0.74 0.10 0.93 5.9 1.20 B 4.4 0.95 0.78 (B)
Amoxicillin 0.50 0.86 0.18 2.6 1.04 A 0.4 0.51 0.98 (B)
Antipyrine 1.00 0.95 0.10 1.5 1.00 N 0.1 1.00 1.00 (D) (E)
Aprepitant 0.59 0.00 0.95 1.3 0.60 N 2.1 0.66 0.89 (B) (F)
Atenolol 0.58 0.94 0.05 2.4 1.07 B 0.1 0.58 0.99 (B)
Benzydamine 0.87 0.55 0.20 2.3 1.00 B 1.0 0.92 0.95 (G) (H)  (I)
Bepridil  0.60 0.01 0.99 5.3 0.67 B 7.8 0.99 0.61 (A)
Betaxolol 0.89 0.15 0.55 4.7 1.00 B 2.2 1.00 0.89 (A)
Bisoprolol 0.90 0.63 0.35 3.7 1.00 B 1.4 0.97 0.93 (A)
Bosentan 0.50 0.01 0.98 2.2 1.00 A 2.2 0.56 0.89 (J)
Bromocriptine 0.05 0.02 0.93 5.0 1.00 B 4.9 0.07 0.76 (A)
Bufuralol 0.46 0.00 0.85 6.2 1.00 B 6.2 0.67 0.69 (K)
Buspirone 0.04 0.00 0.95 28.3 0.62 B 19.2 1.00 0.04 (B)
Caffeine 1.00 0.01 0.36 1.4 0.80 N 0.0 1.00 1.00 (A)
Calcitriol 0.61 0.10 1.00 0.4 0.55 N 0.7 0.63 0.96 (B)
Candesartan 0.42 0.52 1.00 0.4 0.55 A 0.3 0.43 0.98 (B)
Carbamazepine 0.70 0.01 0.74 0.9 1.06 N 0.9 0.73 0.96 (B)
Carvedilol 0.25 0.02 0.95 8.7 0.72 B 11.9 0.62 0.41 (B)
Cefixime 0.40 0.41 0.67 1.3 0.62 A 1.3 0.43 0.94 (B)
Cephalexin 0.90 0.91 0.14 4.3 1.02 A 0.4 0.92 0.98 (B)
Cetirizine 0.85 0.71 0.99 0.5 1.00 Z 0.2 0.86 0.99 (B)
Chlorpheniramine 0.59 0.10 0.70 1.7 1.34 B 1.1 0.63 0.94 (B)
Chlorpromazine 0.40 0.01 0.97 8.6 0.78 B 10.9 0.88 0.45 (B)
Chlorprothixene 0.41 0.00 0.99 12.4 0.81 B 11.8 1.00 0.41 (L)
Chlorthalidone 0.64 0.65 0.75 0.0 0.73 N 0.0 0.64 1.00 (B)
Cimetidine 0.60 0.62 0.19 8.3 0.97 B 3.3 0.72 0.84 (B)
Cinacalcet 0.25 0.00 0.95 18.0 0.64 B 15.0 1.00 0.25 (B)
Ciprofloxacin 0.60 0.50 0.40 7.6 1.07 Z 3.6 0.73 0.82 (B)
Clindamycin 0.53 0.13 0.94 4.7 0.76 B 2.6 0.61 0.87 (B) (M)
Clonidine 0.75 0.62 0.20 3.1 1.04 B 1.1 0.79 0.94 (B)
Clozapine 0.55 0.01 0.95 6.1 1.13 B 5.4 0.75 0.73 (B)
Cyclophosphamide 0.88 0.07 0.13 1.3 1.06 N 1.1 0.93 0.94 (B)
Dapsone 0.86 0.15 0.73 0.6 1.04 N 0.5 0.88 0.98 (B)
Desipramine 0.38 0.02 0.82 10.0 0.96 B 10.2 0.78 0.49 (A)
Diazepam 1.00 0.01 0.99 0.4 0.58 N 0.7 1.00 0.97 (B)
Diclofenac 0.64 0.01 1.00 4.2 0.56 A 7.2 1.00 0.64 (B) (N)
Dicloxacillin 0.49 0.60 0.96 1.6 0.55 A 1.2 0.52 0.94 (B)
Didanosine 0.38 0.36 0.05 16.0 1.08 N 9.5 0.72 0.52 (B)
Diltiazem 0.38 0.04 0.78 11.8 1.00 B 11.3 0.88 0.43 (B)
Diphenhydramine 0.72 0.02 0.78 6.2 0.65 B 5.6 1.00 0.72 (B)
Dofetilide 0.96 0.52 0.64 5.2 0.72 B 0.8 1.00 0.96 (B)
Doxycycline 0.93 0.41 0.88 0.5 1.70 Z 0.2 0.94 0.99 (B)
Entacapone 0.46 0.00 0.98 10.3 0.55 A 10.8 1.00 0.46 (B)
Ethambutol 0.77 0.79 0.18 8.6 0.96 B 1.9 0.85 0.91 (B)
Etoposide 0.52 0.35 0.96 0.7 0.55 N 0.8 0.54 0.96 (B)
Famotidine 0.45 0.67 0.17 7.1 1.00 N 2.3 0.51 0.88 (A)
Finasteride 0.63 0.01 0.90 2.3 0.56 N 4.1 0.79 0.80 (B)
Flecainide 0.74 0.43 0.61 5.6 0.89 B 3.6 0.90 0.82 (B)
Fluconazole 0.90 0.75 0.11 0.3 1.06 N 0.1 0.90 1.00 (B)
Flumazenil 0.16 0.00 0.40 9.9 1.00 N 9.9 0.32 0.51 (B)
Fluorouracil 0.28 0.10 0.10 16.0 1.09 N 13.2 0.82 0.34 (B)
Fluphenazine 0.03 0.00 0.92 10.0 0.69 B 14.6 0.10 0.27 (B)
Foscarnet 0.09 0.95 0.15 1.6 1.27 A 0.1 0.09 1.00 (B)
Furosemide 0.43 0.66 0.99 2.0 0.55 A 1.2 0.46 0.94 (B) (O)
Gabapentin 0.60 0.66 0.03 1.6 1.10 Z 0.5 0.62 0.98 (B)
Galantamine 0.95 0.20 0.18 5.7 1.04 B 1.0 1.00 0.95 (B)
Ganciclovir 0.09 0.91 0.01 3.4 1.08 N 0.3 0.09 0.99 (B)
Gemfibrozil 0.95 0.01 0.97 1.7 0.55 A 1.0 1.00 0.95 (B)
Glimepiride 1.00 0.01 1.00 0.6 0.55 A 0.0 1.00 1.00 (B)
Glyburide 0.73 0.00 1.00 1.3 0.56 A 2.3 0.83 0.88 (B) (P)
Granisetron 0.60 0.16 0.65 11.0 0.86 B 8.0 1.00 0.60 (B)
Hydrochlorothiazide 0.71 0.95 0.58 4.9 1.70 N 0.1 0.72 0.99 (B)
Hydromorphone 0.42 0.06 0.07 14.6 1.07 B 12.8 1.00 0.36 (B)
Ibuprofen 0.80 0.01 0.99 0.6 0.55 A 1.1 0.85 0.95 (B)
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Table  2 (Continued)

Drug Foral frenal fp Clplasm (ml.min−1.kg−1) Rb Drug class ClH Fabs Fmet

Imatinib 0.98 0.05 0.95 3.3 0.64 B 0.4 1.00 0.98 (B)
Imipramine 0.42 0.02 0.90 15.0 1.10 B 11.6 1.00 0.42 (B)
Irbesartan 0.70 0.02 0.90 2.1 0.64 Z 3.3 0.84 0.84 (B)
Isosorbide dinitrate 0.22 0.01 0.28 46.0 1.00 N 15.6 1.00 0.22 (B)
Isosorbide-5-mononitrate 0.93 0.05 0.00 1.8 1.08 N 1.6 1.00 0.92 (B)
Isradipine 0.17 0.00 0.97 10.0 0.55 N 16.2 0.89 0.19 (A)
Ketoprofen 1.00 0.01 0.99 1.2 1.00 A 0.0 1.00 1.00 (A)
Lamivudine 0.82 0.50 0.36 5.0 1.06 N 2.3 0.93 0.88 (B)
Lansoprazole 0.81 0.01 0.97 6.2 0.56 N 3.8 1.00 0.81 (B)
Letrozole 1.00 0.04 0.60 0.6 0.92 N 0.0 1.00 1.00 (B)
Levetiracetam 1.00 0.66 0.10 1.0 1.07 N 0.3 1.00 0.98 (B)
Levofloxacin 0.99 0.70 0.30 2.5 1.05 Z 0.2 1.00 0.99 (B)
Lidocaine 0.37 0.02 0.70 9.2 0.84 B 10.7 0.80 0.46 (B)
Linezolid 1.00 0.35 0.31 2.1 0.73 N 0.0 1.00 1.00 (B)
Lorazepam 0.93 0.01 0.91 1.1 1.05 N 1.0 0.98 0.95 (B)
Losartan 0.36 0.12 0.99 8.1 0.55 A 12.9 1.00 0.35 (B)
Meloxicam 0.97 0.01 0.99 0.2 1.22 A 0.1 0.98 0.99 (B)
Melphalan 0.56 0.12 0.90 5.2 0.96 Z 4.8 0.74 0.76 (B) (Q)
Meperidine 0.52 0.05 0.58 17.0 0.87 B 9.6 1.00 0.52 (B)
Mercaptopurine 0.12 0.22 0.19 11.0 1.20 N 7.2 0.19 0.64 (B)
Metformin 0.52 1.00 0.00 7.6 1.04 B 0.0 0.52 1.00 (B)
Methadone 0.86 0.24 0.89 1.7 0.75 B 1.6 0.93 0.92 (B) (R)
Methotrexate 0.70 0.81 0.46 2.1 0.71 A 0.6 0.72 0.97 (B)
Methylprednisolone 0.82 0.05 0.78 6.2 0.78 N 3.6 1.00 0.82 (B)
Metoclopramide 0.76 0.20 0.40 6.2 0.96 B 4.8 1.00 0.76 (B)
Metoprolol 0.38 0.10 0.11 15.0 1.00 B 12.4 1.00 0.38 (B)
Metronidazole 0.99 0.10 0.11 1.3 1.07 N 0.2 1.00 0.99 (B)
Midazolam 0.44 0.01 0.98 6.6 0.80 N 8.2 0.74 0.59 (B)
Montelukast 0.62 0.00 0.99 0.7 0.55 A 1.3 0.66 0.94 (B)
Morphine 0.24 0.04 0.35 24.0 0.95 B 15.2 1.00 0.24 (B)
Moxifloxacin 0.86 0.22 0.39 2.3 1.05 Z 1.7 0.94 0.92 (B)
Nadolol 0.34 0.73 0.20 2.9 1.00 B 0.8 0.35 0.96 (A)
Nalmefene 0.40 0.10 0.34 15.0 1.11 B 12.2 1.00 0.39 (B)
Naloxone 0.02 0.00 0.30 22.0 1.22 B 18.0 0.20 0.10 (B)
Naproxen 0.99 0.01 1.00 0.1 1.00 A 0.1 1.00 0.99 (B)
Nifedipine 0.50 0.00 0.96 7.0 1.63 N 4.3 0.64 0.79 (B)
Nitrendipine 0.23 0.01 0.98 21.0 0.70 N 15.5 1.00 0.23 (A) (S)
Nitrofurantoin 0.90 0.47 0.62 9.9 0.76 A 2.0 1.00 0.90 (B)
Nortriptyline 0.56 0.02 0.92 7.2 1.50 B 4.7 0.73 0.76 (B)
Omeprazole 0.71 0.00 0.95 7.5 0.58 N 5.8 1.00 0.71 (A)
Ondansetron 0.62 0.05 0.73 5.9 0.83 B 6.8 0.94 0.66 (B)
Oxazepam 0.97 0.01 0.99 1.1 0.66 N 0.6 1.00 0.97 (A)
Oxycodone 0.42 0.19 0.45 12.4 1.03 B 9.8 0.82 0.51 (B)
Phenacetin 0.37 0.40 0.33 20.0 1.01 N 11.9 0.91 0.41 (T)
Phenobarbital 1.00 0.24 0.51 0.1 0.86 N 0.1 1.00 1.00 (B)
Phenytoin 0.90 0.02 0.89 5.9 1.00 N 2.0 1.00 0.90 (B)
Pindolol 0.75 0.54 0.51 8.3 1.00 B 3.8 0.93 0.81 (A)
Pirenzepine 0.33 0.90 0.11 3.8 1.00 B 0.4 0.34 0.98 (U) (V)
Pravastatin 0.18 0.47 0.45 13.5 0.55 A 13.0 0.51 0.35 (B)
Prazosin 0.68 0.04 0.95 3.0 0.70 N 4.1 0.86 0.79 (B)
Prednisone 0.80 0.03 0.75 3.6 1.00 N 3.5 0.97 0.83 (B)
Procainamide 0.83 0.67 0.16 1.7 1.00 B 0.6 0.85 0.97 (B)
Propafenone 0.05 0.01 0.95 17.0 0.70 B 14.0 0.17 0.30 (A)
Propofol 0.00 0.00 0.98 27.0 1.25 N 20.0 1.00 0.00 (B)
Propranolol 0.26 0.01 0.87 16.0 0.89 B 14.8 1.00 0.26 (B)
Quetiapine 0.09 0.01 0.83 19.0 0.90 B 18.2 1.00 0.09 (B)
Quinidine 0.75 0.18 0.87 4.7 0.88 B 4.4 0.96 0.78 (B)
Quinine 0.76 0.16 0.90 0.9 0.91 B 0.8 0.79 0.96 (B)
Ranitidine 0.52 0.69 0.15 10.4 1.03 B 3.1 0.62 0.84 (B)
Repaglinide 0.56 0.01 0.97 9.3 0.55 A 8.8 1.00 0.56 (B)
Riluzole 0.60 0.01 0.98 5.5 1.70 N 3.2 0.71 0.84 (B)
Risedronate 0.01 0.87 0.24 1.5 1.07 A 0.2 0.01 0.99 (B)
Risperidone 0.66 0.03 0.89 5.4 0.67 B 6.8 1.00 0.66 (B)
Rizatriptan 0.47 0.28 0.14 12.3 1.04 B 8.5 0.82 0.57 (B)
Scopolamine 0.29 0.06 0.10 15.5 1.00 B 14.2 1.00 0.29 (W)
Sildenafil 0.40 0.00 0.96 6.0 0.99 N 6.0 0.57 0.70 (B)
Sulfamethoxazole 1.00 0.14 0.53 0.3 0.79 A 0.3 1.00 0.98 (B)
Sulpiride 0.27 0.74 0.00 5.9 1.00 B 1.5 0.29 0.92 (X)
Sumatriptan 0.14 0.22 0.18 22.0 1.03 B 16.7 0.84 0.17 (B)
Tamsulosin 1.00 0.13 0.99 0.6 0.55 B 1.0 1.00 0.95 (B)
Tegaserod 0.11 0.00 0.98 18.0 0.72 B 17.8 1.00 0.11 (B)
Tenoxicam 0.95 0.00 0.99 0.0 0.67 A 0.1 0.95 1.00 (Y)
Terazosin 0.82 0.13 0.92 1.2 0.84 N 1.2 0.87 0.94 (B)
Terbutaline 0.26 0.57 0.23 3.4 1.00 B 1.5 0.28 0.93 (Z) (AA)
Tetracycline 0.77 0.58 0.65 1.7 1.70 Z 0.4 0.79 0.98 (B)
Theophylline 0.96 0.18 0.56 0.7 1.33 N 0.4 0.98 0.98 (B)
Timolol 0.75 0.08 0.10 7.7 0.87 B 4.8 1.00 0.75 (B) (AB)
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Table  2 (Continued)

Drug Foral frenal fp Clplasm (ml.min−1.kg−1) Rb Drug class ClH Fabs Fmet

Tolbutamide 0.85 0.00 0.96 0.2 0.55 A 0.4 0.87 0.98 (B)
Tramadol 0.70 0.20 0.20 8.0 1.03 B 6.2 1.00 0.69 (B)
Trazodone 0.81 0.01 0.93 2.1 0.81 N 2.6 0.93 0.87 (B)
Triazolam 0.86 0.02 0.90 2.5 0.62 N 2.8 1.00 0.86 (A)
Trimethoprim 0.63 0.63 0.37 1.9 1.03 N 0.7 0.65 0.97 (B)
Valproic acid 1.00 0.02 0.93 0.1 0.64 A 0.2 1.00 0.99 (B)
Valsartan 0.23 0.29 0.95 0.5 0.55 A 0.6 0.24 0.97 (B)
Verapamil 0.22 0.03 0.90 15.0 0.77 B 15.6 1.00 0.22 (B)
Vinorelbine 0.27 0.11 0.87 21.0 0.58 B 14.6 1.00 0.27 (B)
Vinpocetine 0.57 0.00 0.66 5.2 0.57 B 8.7 1.00 0.57 (AC)
Warfarin 0.93 0.02 0.99 0.1 0.55 A 0.1 0.93 1.00 (B)
Zaleplon 0.31 0.01 0.60 15.7 0.99 N 13.8 1.00 0.31 (B)
Zidovudine 0.63 0.18 0.25 26.0 1.06 N 7.4 1.00 0.63 (B)
Ziprasidone 0.59 0.01 1.00 11.7 0.81 B 8.2 1.00 0.59 (B)
Zolpidem 0.72 0.01 0.92 4.5 0.76 N 5.6 1.00 0.72 (B)

References for the pharmacokinetic data are from (A) Goodman et al. (1996), (B) Goodman et al. (2006), (C) Breithaupt and Tittel (1982),  (D) Rimmer et al. (1986), (E) Atiba
et  al. (1987), (F) Majumdar et al. (2006),  (G) Koppel and Tenczer (1985),  (H) Chasseaud and Catanese (1985),  (I) Baldock et al. (1991), (J) Weber et al. (1999), (K) Balant et al.
(  et al. 
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(Table 3). In vitro data for Clint only were available for 25 drugs
(Table 4). In vitro data for Papp only were available in another 22
drugs (Table 5). For the remaining 68 drugs, in silico based data
were used (Table 6).
1980),  (L) Raaflaub (1975), (M)  Gatti et al. (1993), (N) Hinz et al. (2005), (O) Smith
S)  Mikus et al. (1987), (T) Raaflaub and Dubach (1975),  (U) Vergin et al. (1986), (V) 

Z)  Fagerstrom (1984), (AA) Nyberg (1984), (AB) Else et al. (1978),  (AC) Vereczkey e

specially in early phases of the lead development, in vivo data are
ot available and extrapolations or allometric scaling approaches
re typically used. In our study, we used both in silico and in vitro
ased estimations of permeability and metabolic activity. Since a
omplete pH solubility profile was needed for each drug and these
ata were not available for the majority of the drugs, only in sil-

co estimations of solubility were used. In all cases, and taking in
onsideration the well described solubility/dose effect on bioavail-
bility (Benet et al., 2011; Rinaki et al., 2003; Takagi et al., 2006),
he studied doses (Tables 3–6)  were the largest that are described
or clinical practice (Ritschel, 2000).

In silico estimated solubility values were obtained using
he on-line ADME Boxes (http://www.pharma-algorithms.com/
ebboxes) considering the “In buffer solubility” option and the pH

alues of the stomach, duodenum, jejunum and ileum. In a recent
aper testing the predictive performance of various in silico solu-
ility models in a new data set of 122 drugs, ADME Boxes presented
9% of well predicted drugs within ±0.5 log unit of measured value
nd a standard error of 0.62 log values (Dearden, 2006).

In order to estimate the effective permeability of the different
rugs in the GIT, both in silico and in vitro apparent permeabil-

ties values based on the Caco-2 cell system were used. In vitro
alues were collected in the literature, under similar exper-
mental conditions, namely, experimental pH values ranging
rom 6.8 to 7.4, with low to median passage numbers (28–46)
nd typically at a cell age close to 21 days. For drugs without
n vitro data available, an in silico ANN model was  used (Paixao
t al., 2010b).  This model was based on calculated molecular
escriptors for a total of 296 in vitro Caco-2 apparent permeability
Papp) drug values also collected in the literature. The model
resented correlations of 0.843 and 0.702 and a root mean square
rror (RMSE) of 0.546 and 0.791 for the train (N = 192) and test
N = 59) group respectively. An external validation step was also
erformed with an additional group of 45 drugs resulting in a
orrelation of 0.774 and RMSE of 0.601. Papp values were used to
stimate the effective human permeability (Peff) by performing

 multiple linear regression, based on 29 reference drugs with
nown human effective permeability, resulting in the equation
og(Peff)(cm h−1) = 0.932 + 0.763 × log(Papp)(cm h−1) + 0.0324 × RBN
RBN being the number of rotable bonds in the molecule) and
resenting an r = 0.887 and RMSE = .301 (Fig. 2).
To estimate the in vivo hepatic intrinsic clearance both in silico
nd in vitro intrinsic clearance (Clint) values based on suspensions
f human hepatocytes were used. In vitro Clint values were obtained
rom published studies on drug metabolism in human hepatocytes
(1980), (P) Neugebauer et al. (1985), (Q) Alberts et al. (1979), (R) Dale et al. (2004),
 al. (1986), (W)  Putcha et al. (1989), (X) Wiesel et al. (1980),  (Y) Heintz et al. (1984),
979).  Rb values are from Paixao et al. (2009).

using the substrate depletion method in absence of added serum.
For drugs without in vitro data available, an in silico ANN model
was  again used (Paixao et al., 2010a).  This ANN model was built
based only on calculated molecular descriptors and 89 in vitro Clint
values. Data were divided into a train group of 71 drugs for network
optimization and a test group of another 18 drugs for early-stop and
internal validation resulting in correlations of 0.953 and 0.804 for
the train and test group, respectively. The external validation was
made with another 112 drugs by comparing the in silico predicted
Clint with the in vivo Clint estimated by the “well-stirred” model
based on the in vivo hepatic clearance (ClH). Acceptable correlations
were observed with r values of 0.508 and 63% of drugs within a 10-
fold difference when considering blood binding in acidic drugs only.
In order to scale the in silico and in vitro Clint values to the in vivo
Clint, hepatocellularity was  considered to be 107 × 106 cell g−1 liver
(Wilson et al., 2003) and it was also assumed that liver weighed
20 g kg−1 of body weight.

To test the applicability of the PBPK based absorption model,
data from Table 2 were grouped in terms of Papp and Clint source.
In vitro data for both Papp and Clint were available for 49 drugs
Fig. 2. Relationship between the predicted logarithm of the effective human jejunal
permeability by the multiple linear regression and the in vivo observed values.

http://www.pharma-algorithms.com/webboxes
http://www.pharma-algorithms.com/webboxes
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Table  3
Drug parameters and predicted bioavailability by the pharmacokinetic model for the 49 drugs with In vitro data for both Papp and Clint.

Drug Data parameters Observed Predicted

In vitro Clint

(L h−1)
In vitro Peff

(cm h−1)
Foral (%) Si pH 4.6

(mg/ml)
Si pH 6.5
(mg/ml)

Si pH 7.5
(mg/ml)

Dose max
(mg)

Foral (%) Fd Fperm Fmet Foral (%)

Acebutolol 16.18 0.21 106.40 106.40 106.40 21.23 200 37 1.00 0.62 0.83 51
Acetaminophen 6.97 1.96 7.58 7.58 7.58 7.58 2000 88 1.00 1.00 0.92 92
Antipyrine 4.22 1.87 19.71 14.95 14.95 14.95 600 100 1.00 1.00 0.95 95
Atenolol 0.90 0.12 923.64 923.64 923.64 473.70 50 58 1.00 0.43 0.99 42
Betaxolol 22.47 1.80 82.76 4138 82.76 15.77 40 89 1.00 1.00 0.78 78
Bosentan 13.48 0.19 0.00 0.02 0.01 0.06 600 50 0.08 0.43 0.99 3
Bromocriptine 332.56 0.20 17.22 860.98 17.22 2.17 5 5 1.00 0.61 0.20 12
Caffeine 21.12 1.70 31.50 31.50 31.50 31.50 350 100 1.00 1.00 0.79 79
Carbamazepine 12.58 2.03 0.04 0.04 0.04 0.04 200 70 0.62 0.94 0.86 51
Chlorpromazine 72.49 1.55 3.50 174.83 2.78 0.36 100 40 1.00 0.99 0.53 52
Cimetidine 10.79 0.24 390.91 390.91 390.91 310.51 400 60 1.00 0.66 0.88 58
Clozapine 53.93 1.73 179.62 1055 0.29 0.06 150 55 1.00 1.00 0.60 60
Desipramine 62.92 0.95 59.64 2982 59.64 40.32 50 38 1.00 0.97 0.56 55
Diazepam 10.08 1.92 2.26 0.07 0.07 0.07 15 100 1.00 1.00 0.89 89
Diclofenac 395.47 1.43 0.03 3.81 4.09 30.31 50 64 1.00 0.99 0.96 95
Diltiazem 116.84 2.60 16.89 16.89 0.87 0.13 120 38 1.00 1.00 0.41 41
Famotidine 0.90 0.15 1019 16.15 0.29 0.11 40 45 1.00 0.51 0.99 50
Furosemide 0.09 0.06 0.29 3.98 194.77 630.27 40 43 1.00 0.24 1.00 24
Ibuprofen 37.75 1.91 0.06 8.38 9.01 58.15 800 80 1.00 1.00 0.99 99
Imipramine 71.90 0.68 28.05 1402 23.87 3.01 200 42 1.00 0.94 0.53 50
Ketoprofen 22.47 2.27 0.02 3.19 3.35 25.43 200 100 1.00 1.00 0.99 99
Lidocaine 120.44 3.05 575.33 575.33 66.06 12.88 750 37 1.00 1.00 0.40 40
Methylprednisolone 87.18 0.89 0.08 0.08 0.08 0.08 24 82 0.99 0.94 0.48 45
Metoprolol 62.92 2.68 558.70 558.70 558.70 217.36 100 38 1.00 1.00 0.56 56
Morphine 215.71 0.60 220.28 11014 87.69 13.27 30 24 1.00 0.92 0.27 25
Nadolol 0.90 0.14 759.61 759.61 692.77 245.80 120 34 1.00 0.49 0.99 48
Naloxone 714.55 1.41 568.97 568.97 45.20 7.85 20 2 1.00 0.99 0.10 10
Naproxen 35.95 1.53 0.18 27.62 27.06 148.68 250 99 1.00 0.99 0.99 99
Nitrendipine 66.51 1.28 0.27 0.09 0.09 0.09 20 23 1.00 0.98 0.55 54
Ondansetron 12.58 2.52 40.50 2025 2.28 0.32 8 62 1.00 1.00 0.87 86
Oxazepam 17.98 2.87 0.03 0.81 0.02 0.02 25 97 0.97 1.00 0.82 79
Phenytoin 26.47 1.93 0.16 0.16 0.16 0.18 300 90 0.99 0.97 0.75 73
Pindolol 25.17 1.76 2213 2213 1567 988.74 20 75 1.00 1.00 0.76 76
Pirenzepine 0.90 0.07 1976 734.28 37.66 5.83 10 33 1.00 0.29 0.99 29
Prazosin 20.67 0.58 541.64 171.28 4.40 1.84 5 68 1.00 0.91 0.80 72
Propofol 961.72 1.18 0.21 10.47 0.21 0.21 1 0 1.00 0.98 0.08 8
Propranolol 116.84 2.04 482.99 24149 482.99 175.36 80 26 1.00 1.00 0.41 41
Quinidine 49.43 1.02 893.64 893.64 67.79 10.50 400 75 1.00 0.98 0.62 61
Ranitidine 8.99 0.14 1505 703.99 38.69 5.59 150 52 1.00 0.49 0.90 44
Scopolamine 62.92 1.11 1076 1076 152.06 35.65 0.5 29 1.00 0.98 0.56 55
Sildenafil 46.74 2.70 2795 368.45 9.47 2.86 50 40 1.00 1.00 0.63 63
Sulpiride 0.09 0.06 304.34 304.34 76.45 11.31 100 27 1.00 0.25 1.00 25
Terbutaline 0.09 0.12 1006 1006 528.20 196.25 5 26 1.00 0.43 1.00 43
Theophylline 4.49 1.34 17.61 17.61 18.02 18.02 400 96 1.00 0.99 0.95 94
Tolbutamide 9.71 3.50 0.19 0.24 4.00 28.31 500 85 1.00 1.00 0.99 99
Valproic acid 4.40 1.98 2.95 4.46 83.00 262.47 500 100 1.00 1.00 0.99 99
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Verapamil 269.64 2.49 8.66 433.18 

Warfarin 9.89 1.76 0.20 16.52 

Zidovudine 28.77 0.76 15.74 15.74 

.5. Statistical and pharmacokinetic analysis

Since bioavailability values range from 0% and 100%, correla-
ion between the predicted and observed values was determined by

eans of the Spearman rank correlation coefficient (rs) for the four
roups of data. In order to assess the precision and bias of the model,
MSE and mean error (ME), respectively, were also calculated by
sing the following equations.

MSE =
√∑

(Fpred − Fobs)2

N
(4)

E =
∑

(Fpred − Fobs)
N

(5)
Percentage of correct values within an absolute ±20% margin
rror was determined in order to test the quantitative ability of
he model to predict absolute bioavailability. Additionally, percent-
ge of correct values within a ± 35% error was also determined in
5 0.44 120 22 1.00 1.00 0.23 23
5 69.03 6 93 1.00 1.00 1.00 99
4 15.74 350 63 1.00 0.95 0.74 70

order to test the qualitative predictive ability of the model. A mul-
tifactor ANOVA analysis was  also performed, in order to establish
the effect of data origin (in silico vs in vitro) for Papp and Clint as
well as differences from the different drug classes (acidic, basic,
neutral and zwitterionic) on the oral bioavailability prediction,
assessed by the squared residuals between predicted and observed
values.

In vivo ClH values from Table 2 drugs were determined by using
Eq. (6) (Naritomi et al., 2003),

CLH = CLplasma
total
Rb

× (1 − frenal) (6)

This equation assumes that total blood clearance, determined by
the ratio between the described total plasma clearance (CLplasma

total )

to the drug blood-to-plasma concentration ratio (Rb), is the sum of
Hepatic and Renal Clearance, the last being determined by using
the fraction of drug eliminated by the kidneys (frenal). Some drugs,
however, may  have other non renal elimination routes besides the
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Table  4
Drug parameters and predicted bioavailability by the pharmacokinetic model for the 25 drugs with In vitro data for Clint only.

Drug Data parameters Observed Predicted

In vitro Clint

(L h−1)
In silico Peff

(cm h−1)
Si pH 1.5
(mg/ml)

Si pH 4.6
(mg/ml)

Si pH 6.5
(mg/ml)

Si pH 7.5
(mg/ml)

Dose max
(mg)

Foral (%) Fd Fperm Fmet Foral (%)

Benzydamine 184.40 0.92 269.52 13476 19.52 2.46 5 87 1.00 0.97 0.31 30
Bepridil 17.98 1.87 220.90 11045 6.67 0.88 200 60 1.00 1.00 0.82 82
Bisoprolol 14.38 0.87 527.90 527.90 527.90 178.88 10 90 1.00 0.96 0.85 82
Bufuralol 62.92 2.37 75.39 3769 41.43 5.85 60 46 1.00 1.00 0.56 56
Carvedilol 314.58 0.79 4.07 203.26 0.13 0.02 12.5 25 1.00 0.95 0.20 20
Cetirizine 0.90 0.39 42.65 0.42 0.37 0.47 10 85 1.00 0.81 0.99 81
Chlorpheniramine 25.17 1.39 1045 52242 315.54 73.97 4 59 1.00 0.99 0.76 76
Chlorprothixene 125.83 2.27 3.02 150.84 1.20 0.15 100 41 1.00 1.00 0.39 39
Diphenhydramine 53.93 1.56 286.55 14328 97.10 16.11 44 72 1.00 0.99 0.60 60
Gemfibrozil 197.74 1.02 0.08 6.42 3.46 25.62 600 95 1.00 0.98 0.88 86
Granisetron 80.89 1.45 1059 1059 431.31 110.86 1 60 1.00 0.99 0.50 50
Isradipine 161.78 3.36 0.14 0.05 0.05 0.05 5 17 0.98 1.00 0.33 33
Lorazepam 5.71 1.52 0.02 0.61 0.01 0.01 2 93 0.98 0.99 0.93 91
Midazolam 106.28 1.57 17.10 4.38 0.00 0.00 10 44 1.00 0.99 0.43 43
Nifedipine 59.77 1.51 0.62 0.21 0.21 0.21 10 50 1.00 0.99 0.58 57
Nortriptyline 24.63 1.08 13.20 660.09 13.20 6.77 125 56 1.00 0.98 0.77 75
Omeprazole 15.28 3.53 165.35 0.74 0.46 0.48 20 71 1.00 1.00 0.84 84
Phenacetin 67.41 1.72 1.36 1.36 1.36 1.36 1000 37 1.00 1.00 0.55 54
Prednisone 87.18 1.44 0.11 0.11 0.11 0.11 10 80 1.00 0.99 0.48 48
Procainamide 11.68 0.72 1076 1076 438.28 135.44 1000 83 1.00 0.94 0.87 82
Propafenone 517.71 0.51 121.17 6058 121.17 24.74 150 5 1.00 0.89 0.14 12
Tenoxicam 23.37 3.07 0.49 0.51 8.67 58.64 20 95 1.00 1.00 1.00 100
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Triazolam 14.29 1.35 8.23 0.57 

Vinpocetine 2336.88 0.37 78.47 3923 

Zolpidem 32.27 2.45 172.88 1016 

epatic one. In these cases, it is expected that ClH determined by
q. (6) would be over predicted. To minimize this, in vivo ClH was
lso determined by Eq. (7) (Iwatsubo et al., 1997),

LH = QH × (1 − Foral) (7)

This equation assumes that oral bioavailability (Foral) is only a
esult of the first pass-effect in the liver, allowing the determination
f the liver extraction ratio (EH) and the ClH by multiplying EH with
he hepatic blood flow rate (QH) with a value of 20 ml  min−1 kg−1.

lthough Eq. (7) could also provide over predicted values for
lH, in theory these would be the maximum possible values

or this parameter. For this reason, when comparing ClH deter-
ined by Eq. (6) to the value obtained with Eq. (7),  if the first is

able 5
rug parameters and predicted bioavailability by the pharmacokinetic model for the 22 d

Drug Data parameters 

In silico
Clint (L h−1)

In vitro Peff

(cm h−1)
Si pH 1.5
(mg/ml)

Si pH 4.6
(mg/ml)

Si p
(mg

Acyclovir 30.79 0.14 23.05 5.79 

Amoxicillin 7.77 0.09 2.65 0.30 

Cephalexin 16.81 0.08 1.03 0.14 

Ciprofloxacin 3.83 0.17 208.80 9.39 

Clonidine 191.67 1.51 148.57 7429 

Doxycycline 0.03 0.86 46.54 1.25 

Etoposide 333.91 0.24 0.07 0.07 

Fluconazole 0.78 1.34 7.52 1.50 

Foscarnet 0.01 0.01 457.51 1414 141
Gabapentin 3.89 0.00 241.93 7.48 

Ganciclovir 0.94 0.09 26.12 9705 970
Hydrochlorothiazide 13.15 0.11 0.94 0.94 

Losartan 35.79 0.19 2.93 0.42 

Meloxicam 4.52 1.31 7.18 0.73 4
Metformin 0.01 0.10 873.50 873.50 87
Methotrexate 0.01 0.19 0.50 0.01 

Pravastatin 0.86 0.35 0.05 0.14 

Sulfamethoxazole 1.00 1.04 1.42 0.68 

Sumatriptan 17.46 0.26 725.24 725.24 50
Tetracycline 0.05 0.23 137.36 4.34 

Timolol 11.45 1.30 1231 1231 114
Trimethoprim 26.44 2.35 290.36 187.47 
0.00 0.25 86 1.00 0.99 0.85 84
1.57 20 57 1.00 0.80 0.03 3
0.28 10 72 1.00 1.00 0.72 71

bigger the latter prevails. For these drugs, the relative amount of
drug escaping the first-pass effect (Fmet) is equal to Foral result-
ing that the relative amount of drug absorbed (Fabs) presents a
value of 1. For the remaining drugs, Fmet was determined by using
Eq. (8),

Fmet = 1 −
(

ClH
QH

)
(8)

And F , including both the effect of in vivo solubility and in vivo
abs
permeability, was  determined by using Eq. (9),

Fabs = Foral

Fmet
(9)

rugs with In vitro data for Papp only.

Observed Predicted

H 6.5
/ml)

Si pH 7.5
(mg/ml)

Dose max
(mg)

Foral (%) Fd Fperm Fmet Foral (%)

5.79 5.92 400 30 1.00 0.48 0.72 35
0.34 6.65 3000 50 0.87 0.28 0.93 23
0.16 0.32 500 90 0.66 0.30 0.85 17
1.56 1.35 500 60 1.00 0.55 0.95 53
6.05 0.96 0.1 75 1.00 0.99 0.30 30
1.20 1.22 100 93 1.00 0.96 1.00 96
0.07 0.07 100 52 0.51 0.60 0.20 6
1.50 1.50 200 90 1.00 0.99 0.99 98
4 1414 560 9 1.00 0.05 1.00 5
6.51 6.51 600 60 1.00 0.01 0.95 1
5 9705 1000 9 1.00 0.35 0.99 34
0.96 0.99 12.5 71 1.00 0.42 0.86 36
0.01 0.08 50 36 1.00 0.59 0.99 59
1.29 226.91 15 97 1.00 0.99 1.00 99
3.50 873.50 500 52 1.00 0.39 1.00 39
0.13 0.97 50 70 1.00 0.57 1.00 57
6.89 51.05 20 18 1.00 0.77 0.99 77
4.61 29.76 1000 100 1.00 0.97 1.00 97
1.75 144.71 100 14 1.00 0.69 0.82 57
4.15 4.24 250 77 1.00 0.65 1.00 65
9 549.98 20 76 1.00 0.99 0.88 87
4.20 1.03 160 63 1.00 1.00 0.75 75
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Table  6
Drug parameters and predicted bioavailability by the pharmacokinetic model for the 68 drugs with only in silico based data.

Drug Data parameters Observed Predicted

In silico
Clint (L h−1)

In silico Peff

(cm h−1)
Si pH 1.5
(mg/ml)

Si pH 4.6
(mg/ml)

Si  pH 6.5
(mg/ml)

Si  pH 7.5
(mg/ml)

Dose max
(mg)

Foral (%) Fd Fperm Fmet Foral (%)

Alendronate 0.03 0.01 463.88 292.69 292.69 292.69 70 2 1.00 0.04 1.00 4
Allopurinol 2.89 2.96 3.05 3.05 3.05 3.05 300 90 1.00 1.00 0.97 97
Alprazolam 27.52 1.66 0.09 0.35 0.01 0.01 4.5 88 0.31 0.99 0.75 23
Amiodarona 109.31 9.10 0.33 16.55 0.05 0.01 400 46 1.00 1.00 0.43 43
Amitriptyline 76.65 0.84 5.41 270.48 2.15 0.28 100 48 1.00 0.96 0.51 49
Amlodipine 7.26 0.85 564.47 564.47 145.09 23.53 10 74 1.00 0.96 0.92 88
Aprepitant 114.69 2.75 10.18 1.31 0.00 0.00 125 59 1.00 1.00 0.41 41
Buspirone 20.15 1.54 1932 17182 8.63 1.64 20 4 1.00 0.99 0.80 80
Calcitriol 8.64 4.99 0.01 0.33 0.01 0.01 0.0042 61 0.90 1.00 0.90 81
Candesartan 30.67 2.62 0.07 0.04 0.02 0.14 16 42 1.00 0.99 1.00 98
Cefixime 0.05 0.02 1.19 2.22 130.79 557.93 200 40 1.00 0.23 1.00 23
Chlorthalidone 3.40 2.04 0.02 0.02 0.02 0.02 50 64 0.63 0.94 0.96 57
Cinacalcet 13.68 2.21 1.18 59.18 0.37 0.05 75 25 1.00 1.00 0.86 85
Clindamycin 114.78 0.73 996.41 996.41 75.59 15.43 150 53 1.00 0.95 0.41 39
Cyclophosphamide 7.20 0.73 32.87 32.87 32.87 32.87 50 88 1.00 0.95 0.92 87
Dapsone 0.01 0.42 0.08 0.05 0.05 0.05 100 86 0.51 0.73 1.00 37
Dicloxacillin 414.94 0.05 0.14 604.51 481.32 540.05 2000 49 1.00 0.23 0.73 17
Didanosine 12.28 2.00 15.25 11.57 11.57 11.84 400 38 1.00 1.00 0.87 87
Dofetilide 7.05 0.43 384.64 285.14 5.56 0.80 0.55 96 1.00 0.85 0.92 78
Entacapone 66.46 0.23 1.08 1.08 1.76 6.53 400 46 1.00 0.66 0.97 64
Ethambutol 18.25 0.56 1952 1952 1447 955.86 800 77 1.00 0.90 0.82 74
Finasteride 72.47 4.22 0.03 1.74 0.03 0.03 5 63 1.00 1.00 0.53 53
Flecainide 5.26 1.03 104.09 5204 70.37 9.94 100 74 1.00 0.98 0.94 92
Flumazenil 88.89 0.78 0.87 0.44 0.44 0.44 200 16 1.00 0.95 0.48 45
Fluorouracil 288.30 1.49 6.99 6.99 7.32 8.80 1050 28 1.00 0.99 0.22 22
Fluphenazine 41.20 3.35 234.99 2512 0.71 0.12 12 3 1.00 1.00 0.66 66
Galantamine 1.90 0.77 673.71 673.71 244.61 51.11 12 95 1.00 0.95 0.98 93
Glimepiride 75.25 0.20 0.05 3.16 1.05 7.96 3 100 1.00 0.60 0.99 60
Glyburide 40.59 0.13 0.01 0.88 0.29 2.21 3 73 1.00 0.47 0.99 47
Hydromorphone 137.61 0.85 668.97 668.97 211.55 42.21 4 42 1.00 0.96 0.37 36
Imatinib 139.77 1.20 2058 2412 0.65 0.12 400 98 1.00 0.99 0.37 36
Irbesartan 4.74 0.28 2.36 2.09 0.02 0.02 50 70 1.00 0.72 0.94 68
Isosorbide Dinitrate 88.48 0.37 0.92 0.92 0.92 0.92 20 22 1.00 0.80 0.48 38
Isosorbide-5-mononitrate 0.88 0.32 195.61 195.61 195.61 195.61 20 93 1.00 0.76 0.99 75
Lamivudine 23.00 0.22 741.97 22.93 14.14 14.14 100 82 1.00 0.63 0.78 49
Lansoprazole 8.30 5.01 97.16 19.34 0.24 0.25 15 81 1.00 1.00 0.91 91
Letrozole 11.77 3.45 0.46 4.62 0.09 0.09 2.5 100 1.00 1.00 0.87 87
Levetiracetam 2.10 0.86 60.40 60.40 60.40 60.40 500 100 1.00 0.96 0.97 94
Levofloxacin 206.33 0.56 610.17 19.38 1.66 1.44 500 99 1.00 0.90 0.28 25
Linezolid 9.29 0.31 35.96 1.50 1.44 1.44 600 100 1.00 0.75 0.90 67
Melphalan 82.59 0.58 14.28 4.12 4.12 4.21 25 56 1.00 0.91 0.50 45
Meperidine 56.04 2.58 566.69 28334 149.06 28.40 20 52 1.00 1.00 0.59 59
Mercaptopurine 0.02 4.77 0.57 0.57 0.61 0.92 100 12 1.00 1.00 1.00 100
Methadone 63.77 3.03 23.48 1174 2.96 0.39 10 86 1.00 1.00 0.56 56
Metoclopramide 82.87 0.62 788.66 788.66 193.59 36.05 20 76 1.00 0.92 0.49 46
Metronidazole 50.77 1.13 62.15 15.98 15.98 15.98 100 99 1.00 0.98 0.61 60
Montelukast 269.11 0.05 0.01 0.06 0.00 0.02 10 62 0.56 0.18 0.94 10
Moxifloxacin 51.35 2.27 139.21 0.58 0.02 0.02 400 86 1.00 1.00 0.61 61
Nalmefene 88.56 0.98 100.18 5009 7.96 1.10 50 40 1.00 0.97 0.48 47
Nitrofurantoin 147.73 0.40 0.10 0.10 0.11 0.19 50 90 1.00 0.78 0.35 27
Oxycodone 349.39 1.39 722.54 722.54 161.76 31.54 5 42 1.00 0.99 0.19 19
Phenobarbital 2.55 0.73 0.44 0.44 0.49 0.79 90 100 1.00 0.94 0.97 92
Quetiapine 124.58 4.53 1241 21028 12.41 2.53 250 9 1.00 1.00 0.39 39
Quinine 27.95 2.68 893.64 44682 67.79 10.50 700 76 1.00 1.00 0.74 74
Repaglinide 57.24 0.06 0.72 0.33 0.01 0.06 4 56 1.00 0.26 0.97 25
Riluzole 494.00 1.81 52.44 9.97 0.12 0.12 50 60 1.00 1.00 0.14 14
Risedronate 0.01 0.01 214.78 24.66 214.78 503.48 5 1 1.00 0.06 1.00 6
Risperidone 142.81 4.06 593.41 17471 8.19 1.16 3 66 1.00 1.00 0.36 36
Rizatriptan 15.73 0.90 1072 1072 309.30 72.51 10 47 1.00 0.97 0.84 81
Tamsulosin 67.17 0.67 219.42 219.42 46.91 6.63 0.4 100 1.00 0.93 0.55 51
Tegaserod 0.96 0.50 81.13 81.13 81.13 67.48 6 11 1.00 0.88 0.99 87
Terazosin 23.96 0.66 510.81 150.75 3.70 1.54 1 82 1.00 0.93 0.77 72
Tramadol 19.77 3.02 692.87 34643 692.87 479.35 100 70 1.00 1.00 0.80 80
Trazodone 5.22 2.21 1176 6448 3.17 1.32 100 81 1.00 1.00 0.94 94
Valsartan 23.60 0.06 0.03 82.80 106.92 477.60 80 39 1.00 0.26 0.97 26
Vinorelbine 1154.79 1.95 1004 14809 4.92 0.65 170 27 1.00 1.00 0.07 7
Zaleplon 31.82 3.40 0.35 0.20 0.20 0.20 10 31 1.00 1.00 0.72 72
Ziprasidone 168.26 0.79 180.27 1216 0.33 0.06 20 59 1.00 0.96 0.33 31
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ig. 3. Plot of the in vivo observed bioavailability vs. the model predicted bioavaila
n  vitro data for Clint only; (C) in vitro data for Papp only; (D) in silico data for both Pa

olerance. Drugs outside the ±35% absolute tolerance value are also labeled.

For drugs presenting a prediction error outside the ±20% thresh-
ld value, an evaluation of the probable cause of failure was  made
ased on the comparison of the in vivo Fabs and Fmet (Table 2) with
he model predictions on the individual drugs Fd, Fperm and Fmet

alues (Tables 3–6).  Since in vivo Fd and Fperm could not be sep-
rated, when the predicted Fd × Fperm were significantly different
±20%) from the in vivo Fabs, an individual bibliographic survey was
ndertaken for the establishing of the probable cause for prediction
ailure within absorption.

. Results

.1. Prediction using in vitro data

The first evaluation of the presented methodology was  made
ased on absorption and biotransformation data obtained from

n vitro experiments for the drugs from Table 3. Fig. 3A) presents
he relationship between the observed and the predicted oral
ioavailabilities for the 49 drugs in this data set. A correlation of

s = 0.824 (0.706–0.897 CI95%) was observed with a RMSE = 16.0%
nd a ME  = 1.9%. The model was able to predict 84% of data within
he accepted ±20% error interval and 96% of data lies within
he ±35% error margin, thus showing excellent qualitative and
by the PBPK model of absorption using: (A) in vitro data for both Papp and Clint; (B)
 Clint. Solid line represents the line of unity and the dashed line the ±20% absolute

quantitative prediction capabilities. When evaluating the possible
reasons for predictions outside the accepted ±20% error interval,
solubility was responsible for one case (Bosentan), Papp was respon-
sible for another one case (Sildenafil) and Clint was  responsible for
the remaining 6 cases (Caffeine, Diclofenac, Methylprednisolone,
Nitrendipine, Ondansetron and Scopolamine) of badly predicted
drugs.

3.2. Prediction using in silico Papp Caco-2 values

When considering drugs from Table 4, for which only in vitro
Clint data were available, the model was  tested by including in sil-
ico predicted Papp values to characterize the drug absorption phase.
Fig. 3B) presents the relationship between the observed and the
predicted oral bioavailabilities for the 25 drugs in this data set. A
correlation of rs = 0.718 (0.450–0.867 CI95%) was  observed with a
RMSE = 19.8% and a ME  = −2.7%. The model was able to predict 84%
of data within the accepted ±20% error interval and 92% of data
within the ±35% error interval, indicating again excellent qualita-

tive and quantitative prediction capabilities. Again, the evaluation
of the possible reasons for predictions outside the accepted ±20%
error interval indicated that none of the drugs presented solubil-
ity or in silico Papp related estimation problems. In vitro Clint was
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esponsible for the observed four cases (Benzydamine, Bepredil,
rednisone and Vinpocetine) of badly predicted drugs.

.3. Prediction using in silico Clint hepatocytes values

For the drugs from Table 5, only in vitro Papp data were available.
n this case, the model was tested by including in silico predicted
lint values to characterize the drug metabolization in the liver.
ig. 3C) presents the relationship between the observed and the
redicted oral bioavailability for the 22 drugs in this data set. A
orrelation of rs = 0.532 (0.142–0.779 CI95%) was observed with a
MSE = 31.9% and a ME  = −6.7%. The model resulted in 55% of data
ell predicted within the accepted ±20% error and 73% of data
ithin the ±35% error margin, indicating acceptable quantitative

ut good qualitative prediction capabilities. Solubility was  respon-
ible for two cases (Cephalexin and Ganciclovir) of drugs outside
he accepted ±20% error interval. In vitro Papp was  responsible for

 drugs (Amoxicillin, Cephalexim, Etoposide, Gabapentin, Ganci-
lovir, Hydrochlorothiazide, Losartan and Pravastatin) and in silico
lint was responsible for another five cases (Clonidine, Etoposide,
osartan, Pravastatin and Sumatriptan) of badly predicted drugs. As
entioned above, some drugs were badly predicted due to more

han one drug related parameter.

.4. Prediction using in silico data

For the remaining drugs, included in Table 6, only in silico
app and Clint data were used. Fig. 3D) presents the relation-
hip between the observed and the predicted oral bioavailability
or the 68 drugs in this data set. As expected, due to the
ncrease prediction variability of the added in silico models, a weak
ut statistically significant correlation of rs = 0.284 (0.049–0.489
I95%) was observed with a RMSE = 34.6% and a ME  = −4.5%.
he model resulted in 53% of data well predicted within the
ccepted ±20% error but still was able to predict 74% of data
ithin the ±35% error. In this scenario, solubility was responsi-

le for two drugs (Alprazolam and Dapsone) outside the accepted
20% error interval. In silico Papp was responsible for 12 cases

Candesartan, Dapsone, Dicloxacillin, Flumazenil, Fluphenazine,
limepiride, Glyburide, Lamivudine, Linezolid, Mercaptopurine,
ontelukaste and Repaglinide) and Clint was responsible for

nother 22 drugs (Buspirone, Cinacalcet, Didanosine, Fluphenazine,
matinib, Levofloxacin, Mercaptopurine, Methadone, Metoclo-
ramide, Metronidazole, Moxifloxacin, Nitrofurantoin, Oxycodone,
uetiapine, Repaglinide, Riluzole, Risperidone, Rizatriptan, Tam-

ulosin, Tegaserod, Zaleplon and Ziprasidone with low prediction
ccuracy).

. Discussion

.1. Model structure

We  used an oral bioavailability compartmental model, based on
he CAT model, which considers gastric and intestinal transit time,
olubility, permeability and hepatic metabolism, as primary condi-
ionings of drug bioavailability. Although some important factors
ere not considered, namely the effect of the GIT drug transporters,
rug degradation in the GIT lumen, enterocyte metabolization, to
ame a few, the considered drug characteristics are expectably the
ain factors to limit bioavailability for the majority of drugs. How-

ver, since Caco-2 cells present both metabolization and transport

ystems (Vogel, 2006) these mechanisms may  be included in the
ermeability estimation by the Caco-2 cells, if Papp values were
ollected outside the saturation zone and the drugs present pro-
ortional dose absorption.
Pharmaceutics 429 (2012) 84– 98

In order to characterize drug dissolution in the GIT, it is neces-
sary to consider the water volume in each compartment. With this
purpose, a water model was  built based on the described daily rates
of secretions in the different parts of the GIT as well as the described
percentage of water reabsorption in the small intestine. The sum
of the model steady-state values for the small intestine total a vol-
ume of 308 ml,  which is in agreement with the in vivo experimental
value of 165 ml  (range 25–350 ml)  (Marciani et al., 2007). Addition-
ally, the calculated water absorption rate constant, with a value
of 0.7015 h−1 (Peff = 1.7 × 10−4 cm s−1) is also consistent with the
experimental water (D2O) Peff values of 1.4 and 2.4 × 10−4 cm s−1

under diffusion and convective conditions in humans (Fagerholm
et al., 1999).

The absorption rate of the drugs was assumed to follow first
order kinetics and dependent on the jejunal effective permeabil-
ity (Peff). Since Caco-2 apparent permeabilities (Papp) were used as
estimators of Peff, a multiple linear regression model, using Caco-2
Papp values and RBN, was built to relate these parameters. Previous
authors had used simple linear relationships with variable success
(Parrott and Lave, 2002, 2008; Sun et al., 2002). However, this may
not reflect the fact that, if highly permeable drugs would most likely
be absorbed in the upper part of the villus, low permeability drugs
are likely to diffuse throughout the intervillous space and will have
access to the majority of the absorptive area (Lennernas, 1998;
Palm et al., 1996). The RBN descriptor, since it is also related to the
molecular weight, can account for the difference in surface area
that exists, due to the lack of villus on Caco-2 cell, between Caco-2
cells and the human intestine for low permeability drugs. Another
described morphophysiological difference between Caco-2 and the
intestinal epithelia is the larger density of tight junctions presented
in Caco-2 (Collett et al., 1997). This fact implies that, for drugs with
important paracellular absorption, Caco-2 would under predict the
actual in vivo value. RBN, that counts the number of bonds in the
molecule that allow a free rotation around themselves and is a mea-
sure of the flexibility of the molecule, can also compensate this
effect.

Metabolization of the drug was assumed to occur primarily at
the liver, and the “well-stirred” model was used to simulate that
organ. The choice of liver model does not seem to significantly
influence the ClH predictive capacity both when using rat isolated
microsomes and hepatocytes suspensions (Ito and Houston, 2004).
There is no significant difference for low metabolized drugs when
using the “well-stirred”, the “parallel tube” or the “dispersion”
models and, for the sake of simplicity and minor differences in the
prediction on in vivo ClH, the “Well-Stirred” model can be used for
ClH prediction (Houston and Carlile, 1997; Ito and Houston, 2004,
2005). Use of fB is also a question of debate, with various studies
indicating that the non-inclusion of this parameter in basic, zwit-
terionic and neutral drugs resulted in improved ClH estimations
both when using microsomes (Obach, 1999) or hepatocytes sus-
pensions (Jacobson et al., 2007; Lau et al., 2002; McGinnity et al.,
2004; Reddy et al., 2005). In a previous study, considering 30 drugs
with in vitro Clint data from human hepatocytes suspensions, we
also observed better in vivo Clint predictions with increased preci-
sion (RMSE 0.643 vs 1.042), less bias (ME  −0.073 vs −0.838) and
increased number of compounds predicted within 2-fold (52% vs
16%) when neglecting fB for basic, neutral and zwitterionic drugs
in comparison with the inclusion of fB for all drug classes (Paixao
et al., 2010a).

4.2. Drug parameters
An important drug specific parameter involved in dissolution
is the drug solubility in the GIT medium. This may  depend on a
variety of factors, such as pH, surfactant, buffer capacity and ionic
strength that are difficult to simulate in vitro (Takano et al., 2006).
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s an approximation we used in silico intrinsic water solubility
nd the effect of pH in the drug ionization, and by consequence
n its solubility, at the GIT pH values using ADME Boxes. Addition-
lly, various authors have indicate a relationship between drug
ipophilicity and its increased solubility in the presence of bile
alts (Mithani et al., 1996; Wiedmann and Kamel, 2002; Wiedmann
t al., 2002), and a linear relationship was shown between log P and
he micelle/aqueous partition coefficient in vitro (Wiedmann et al.,
002). However different bile salts interact with drugs with differ-
nt affinities (Atanackovic et al., 2009) and human intestinal fluids
how large variations with regard to composition, which is known
o influence the solubility of poorly soluble drugs in a log P indepen-
ent manner (Kleberg et al., 2010). In this context, and for simplicity

ssues, the surfactant effect was introduced by empirically consid-
ring that drugs with log P values above 2.5 would be 50 times more
oluble in the duodenum than the drug aqueous solubility at pH 4.5.
inally, there is the possibility of drug precipitation when the dis-
olved drug transits from one compartment to the next due to pH
nd water volume changes in the GIT. However, Box. (Box et al.,
006) identified that about 95% of the acids and 75% of the bases
hey studied by using a potentiometric procedure to establish the
queous solubility, were capable to form supersaturated solutions.
n this context, it was assumed that no precipitation occurs. Parrott
t al. (2005) using GastroplusTM without adjusted solubility for bile
alt solubilization, observed that 27 of 29 compounds with low sol-
bility, presented their bioavailability under predicted. In our case,
lthough simple approximations were made, only 3.04% of drugs
resented bad predictions due to solubility questions.

In order to quantify the drug absorption process, permeabil-
ty data collected in Caco-2 cells were used. This cell system
s a widely performed in vitro test with interesting properties

hen extrapolating results to bioavailability. Caco-2 cells, which
re polarized epithelial cells, can form a differentiated monolayer
hat resembles the morphological and biochemical characteristics
f the human intestinal epithelium (Vogel, 2006). Additionally,

 sigmoid relationship between the Papp across Caco-2 cells and
he fraction absorbed in humans has been shown for passively
bsorbed drugs (Stenberg et al., 2001). Although similar gene
xpression was observed between Caco-2 cells and the human
uodenum, around 17% of gene sequences presented at least a
-fold difference in expression (Sun et al., 2002). Due to this,
xtrapolating Papp Caco-2 values for drugs absorbed by carrier
ediated mechanisms or subject to important metabolic degra-

ation at the enterocyte is more difficult. For this reason, we used
n vitro Caco-2 data describing mainly the passive diffusion mecha-
ism of absorption (Paixao et al., 2010b)  which resulted in around
6% of drugs with correct absorption predictions within the ±20%
hreshold value (combining Tables 3 and 5 data), although some
f the badly predicted drugs, like Cephalexin or Gabapentin, were
ndeed substrates of transporters. These results were also observed

ith the in silico based Papp Caco-2 data. In this case (combining
ables 4 and 6 data), 86% of drugs presented correct absorption pre-
ictions and were not considered statistically different (p < 0.4175)

rom the in vitro derived ones by the ANOVA analysis, indicating
hat the used in silico model is a valid alternative to the in vitro

odel in the lead development phase when in vitro data are not
vailable.

able 7
tatistical comparison of the performance of the pharmacokinetic model based on the int

In vitro PappIn vitro Clint In silico PappI

rs 0.824 0.718 

RMSE  (%F) 16.0 19.8 

ME  (%F) 1.9 −2.7 

%Correct values within ± 20% 83.7 84.0 

%Correct values within ± 35% 95.9 92.0 
 Pharmaceutics 429 (2012) 84– 98 95

To characterize the first-pass effect at the liver, we  used in
vitro data obtained in suspensions of isolated human hepatocytes
(Paixao et al., 2010a).  Hepatocytes are intact cells with a complete
set of phase I and II metabolizing enzymes that mimic the in vivo
metabolization of drugs (Gomez-Lechon et al., 2003). Additionally,
the presence of uptake and efflux transporters is also an important
characteristic of this cell system with relevance in the drug metab-
olization process (Hewitt et al., 2007). With the optimization of the
cryopreservation protocols, an increased pool of liver sources is
now available with a minimal loss of metabolic activity (Blanchard
et al., 2005; Griffin and Houston, 2004; McGinnity et al., 2004). Due
to these facts, it appears to be the most promising tool to predict ClH
in the development phase of new drug entities (Fagerholm, 2007).
Our results confirm that using in vitro data from this model (com-
bining Tables 3 and 4 data) is suitable to predict the first-pass effect,
with around 88% of drugs with correct predictions. When using the
in silico model (combining data from Tables 5 and 6), lower and a
statistically significant difference (p < 0.0011) in the prediction abil-
ity was observed, with around 71% of drugs with correct predictions
within the ±20% threshold value. This value improved, however,
to around 81% of drugs with correct predictions when the ±35%
threshold value was considered making this model still a valid tool
in drug discovery and development. Overall, no statistically signif-
icant differences were observed between the different drug classes
(p < 0.8437).

4.3. Model performance

The model statistical performance under the four studied
scenarios is presented in Table 7. As expected, the model best per-
formance in predicting human bioavailability was obtained when
using only in vitro Papp and Clint data. In this scenario, 84% of good
predictions within the ±20% acceptance range were observed with
the lower RMSE of all the simulations. Parrott and Lave (2002) eval-
uated the performance of two  commercial packages (GastroplusTM

and iDEATM) in predicting the absorbable fraction in 28 drugs. A
RMSE of 22% was described for both models, larger than the RMSE
value obtained in our data considering the complete bioavailabil-
ity process. De Buck et al. (2007b) in a retrospective analysis of
16 clinically tested drugs and using GastroplusTM with in vitro
Papp Caco-2 (n = 13), in silico Papp Caco-2 (n = 3) and in vitro Clint
determined in human and rat microsomes and hepatocytes sus-
pensions obtained an average fold error of 1.06 and a RMSE of
15%, similar to the present results. Cai et al. (2006) evaluated an
integrated in vitro – PBPK model to predict human bioavailability
of another 16 drugs. Clint was  determined in human hepatocytes
suspensions, and the absorption data were obtained from the
literature and in-house reports. Their method outperformed the
commercial package iDEATM with 69% vs. 63% of good predictions
within the ±20% accepted range and RMSE = 19% vs. RMSE = 25%.
Our work, as well as these reports, indicates that in vitro data
obtained in Caco-2 and Human hepatocytes suspensions, when
used in various PBPK models of absorption, are capable of provid-

ing statistically relevant predictions of the drug bioavailability in
humans.

It is frequent in the lead development, that not all the in vitro
data are available at some time of the discovery phase. Additionally,

roduction of the different data sources.

n vitro Clint In vitro PappIn silico Clint In silico PappIn silico Clint

0.532 0.284
31.9 34.6
−6.7 −4.5
54.5 52.9
72.7 73.5
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n the beginning of the new drug discovery process, pure in sil-
co methods are frequently used (Venkatesh and Lipper, 2000). We
ested the ability of the proposed method to predict human oral
ioavailability in the typical discovery pipeline, when all data are
ot yet available.

The second situation explored considers that in vitro Clint in
uman hepatocytes suspensions data are available, but only in sil-

co estimates of Papp in Caco-2 are possible to be used. In this case
n ANN model, presenting a correlation of 0.774 and RMSE of 0.601
og values in a validation group of 45 drugs, was used (Paixao et al.,
010b). Using these inputs, the PBPK model presented 84% of good
redictions within the ±20% accepted range and a RMSE of 19.8%.
e Buck et al. (2007a), using in vitro Clint determined in rat micro-

omes, in silico Papp values and GastroplusTM, obtained a RMSE
f 32.1 and 63.3% of values within a 2-fold error when predict-
ng the rat oral bioavailability. Parrott et al. (Parrott et al., 2005)

hen evaluating the utility of PBPK models in early drug discovery,
sing in vitro Papp in PAMPA, in vitro Clint in rat hepatocytes and
astroplusTM, obtained a RMSE of 31% and a r of 0.40 when pre-
icting the rat oral bioavailability. Although different species were
onsidered, our in silico Papp model provided better prediction capa-
ilities than theses models, even when in vitro PAMPA Papp data are
onsidered.

The third situation explored considers that in vitro Papp Caco-2
ata are available, but only in silico estimates of Clint in human hep-
tocytes suspensions are possible to be used. In this case an ANN
ethod, able to predict 63% of in vivo Clint within a 10-fold error

n a validation group of 112 drugs, was used (Paixao et al., 2010a).
hen introduced in the proposed PBPK Model, 55% of good predic-

ions within the ±20% accepted range and a RMSE of 31.9% were
btained. Although some in silico approaches to predict metabolic
learances are emerging (Sheikh-Bahaei and Hunt, 2011; Yu, 2010),
he used ANN model for Clint predictions is the only described in
ilico model to predict the metabolization of drugs in human hep-
tocytes suspensions, limiting the comparisons with other works.

The final situation explored considers that no in vitro data
re available, simulating the initial situation in the drug develop-
ent process. When introducing only in silico derived data in the

roposed PBPK Model, 53% of good predictions within the ±20%
ccepted range and a RMSE of 34.6% was obtained. A low correla-
ion of rs = 0.284 was also obtained. This result was expected due to
he increase of the predictive error presented in the in silico mod-
ls, that combined in the PBPK model, resulted in a poor ability
o quantitatively predict the Human oral bioavailability. Consider-
ng, however, that the model resulted also in 74% of correct values

ithin a ± 35% error, which is sufficient to the establishment of the
ualitative class of absorption, indicates that this approach can still
e used for the early candidate selection. Yoshida and Topliss (2000)
eveloped a QSAR model for human oral bioavailability classifica-
ion that was able to correctly predict the class of absorption of 24
n 40 drugs (60% success). Our model, with similar classification
ates, provides in addition a mechanistic information concerning
he reason for the drug limited absorption.

. Conclusions

The presented methodology, a PBPK model of absorption
onsidering drug dissolution and absorption in the GIT and drug
etabolization in the liver, is a convenient approach to predict and

haracterize the human oral bioavailability in the early drug devel-
pment process. When based on in silico drug solubility, and both
n vitro absorption and metabolization data, it was able to correctly
stablish the oral bioavailability for the vast majority of the studied
rugs. Inclusion of in silico permeability provided similar prediction
bilities when compared with the in vitro derived data. However,
Pharmaceutics 429 (2012) 84– 98

the use of in silico metabolization data degraded the model perfor-
mance. If the absorption process seems to be sufficiently predicted
based only on the molecular structure of the drug, in silico pre-
diction of the metabolization rate, in spite of the initial modeling
efforts, is still prone to improvement. However, qualitative estab-
lishment of oral bioavailability was still statistically possible, which
indicates that this modeling approach may  be an important tool in
the drug discovery pipeline, allowing the refinement of its predic-
tions and indicating lines of investigation in order to improve the
overall success rate of lead development.
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SFRH/BPD/69748/2010 from Fundaç ão para a Ciência e a Tecnolo-
gia.

References

Agoram, B., Woltosz, W.S., Bolger, M.B., 2001. Predicting the impact of physiological
and biochemical processes on oral drug bioavailability. Adv. Drug Deliv. Rev. 50,
S41L 67.

Alberts, D.S., Chang, S.Y., Chen, H.S., Evans, T.L., Moon, T.E., 1979. Oral melphalan
kinetics. Clin. Pharmacol. Ther. 26, 737–745.

Atanackovic, M., Posa, M.,  Heinle, H., Gojkovic-Bukarica, L., Cvejic, J., 2009. Solubi-
lization of resveratrol in micellar solutions of different bile acids. Colloids Surf.
B  Biointerfaces 72, 148–154.

Atiba, J.O., Taylor, G., Pershe, R.A., Blaschke, T.F., 1987. Plasma antipyrine half-life
can be determined from urine data. Br. J. Clin. Pharmacol. 23, 715–719.

Balant, L., Francis, R.J., Tozer, T.N., Marmy, A., Tschopp, J.M., Fabre, J., 1980. Influence
of  renal failure on the hepatic clearance of bufuralol in man. J. Pharmacokinet.
Biopharm. 8, 421–438.

Baldock, G.A., Brodie, R.R., Chasseaud, L.F., Taylor, T., Walmsley, L.M., Catanese, B.,
1991. Pharmacokinetics of benzydamine after intravenous, oral, and topical
doses to human subjects. Biopharm. Drug Dispos. 12, 481–492.

Benet, L.Z., Broccatelli, F., Oprea, T.I., 2011. BDDCS applied to over 900 drugs. AAPS
J.  13, 519–547.

Blanchard, N., Alexandre, E., Abadie, C., Lave, T., Heyd, B., Mantion, G.,  Jaeck, D.,
Richert, L., Coassolo, P., 2005. Comparison of clearance predictions using primary
cultures and suspensions of human hepatocytes. Xenobiotica 35, 1–15.

Box, K.J., Volgyi, G., Baka, E., Stuart, M., Takacs-Novak, K., Comer, J.E., 2006. Equi-
librium versus kinetic measurements of aqueous solubility, and the ability of
compounds to supersaturate in solution – a validation study. J. Pharm. Sci. 95,
1298–1307.

Breithaupt, B., Tittel, M.,  1982. Kinetics of allopurinol after single intravenous and
oral doses. Noninteraction with benzbromarone and hydrochlorothiazide. Eur.
J.  Clin. Pharmacol. 22, 77–84.

Cai, H., Stoner, C., Reddy, A., Freiwald, S., Smith, D., Winters, R., Stankovic, C., Suren-
dran, N., 2006. Evaluation of an integrated in vitro–in silico PBPK (physiologically
based pharmacokinetic) model to provide estimates of human bioavailability.
Int. J. Pharm. 308, 133–139.

Chasseaud, L.F., Catanese, B., 1985. Pharmacokinetics of benzydamine. Int. J. Tissue
React. 7, 195–204.

Collett, A., Walker, D., Sims, E., He, Y.L., Speers, P., Ayrton, J., Rowland, M., Warhurst,
G., 1997. Influence of morphometric factors on quantitation of paracellular per-
meability of intestinal epithelia in vitro. Pharm. Res. 14, 767–773.

Costa, P., Sousa Lobo, J.M., 2001. Modeling and comparison of dissolution profiles.
Eur.  J. Pharm. Sci. 13, 123–133.

D’Argenio, D.Z., Schumitzky, A., 1979. A program package for simulation and param-
eter estimation in pharmacokinetic systems. Comput. Prog. Biomed. 9, 115–134.

D’Argenio, D.Z., Schumitzky, A., 1997. ADAPT II User’s Guide: Pharmacoki-
netic/Pharmacodynamic Systems Analysis Software. Biomedical Simulations
Resource, Los Angeles.

Dale, O., Sheffels, P., Kharasch, E.D., 2004. Bioavailabilities of rectal and oral
methadone in healthy subjects. Br. J. Clin. Pharmacol. 58, 156–162.

De Buck, S.S., Sinha, V.K., Fenu, L.A., Gilissen, R.A., Mackie, C.E., Nijsen, M.J., 2007a.
The prediction of drug metabolism, tissue distribution and bioavailability of 50
structurally diverse compounds in rat using mechanism-based ADME prediction
tools. Drug Metab. Dispos. 35, 649–659.

De Buck, S.S., Sinha, V.K., Fenu, L.A., Nijsen, M.J., Mackie, C.E., Gilissen, R.A., 2007b.
Prediction of human pharmacokinetics using physiologically based modeling:
a  retrospective analysis of 26 clinically tested drugs. Drug Metab. Dispos. 35,
1766–1780.

Dearden, J.C., 2006. In silico prediction of aqueous solubility. Expert Opin. Drug
Discov. 1, 31–52.
Di Fenza, A., Alagona, G., Ghio, C., Leonardi, R., Giolitti, A., Madami, A., 2007. Caco-
2  cell permeability modelling: a neural network coupled genetic algorithm
approach. J. Comput. Aided Mol. Des. 21, 207–221.

Else, O.F., Sorenson, H., Edwards, I.R., 1978. Plasma timolol levels after oral and
intravenous administration. Eur. J. Clin. Pharmacol. 14, 431–434.



nal of

F

F

F

F

F

G

G

G

G

G

G

G

H

H

H

H

H

I

I

I

J

K

K

L

L

L
L

M

M

P. Paixão et al. / International Jour

agerberg, J.H., Tsinman, O., Sun, N., Tsinman, K., Avdeef, A., Bergstrom, C.A., 2010.
Dissolution rate and apparent solubility of poorly soluble drugs in biorelevant
dissolution media. Mol. Pharm. 7, 1419–1430.

agerholm, U., 2007. Prediction of human pharmacokinetics–evaluation of methods
for  prediction of hepatic metabolic clearance. J. Pharm. Pharmacol. 59, 803–828.

agerholm, U., Nilsson, D., Knutson, L., Lennernas, H., 1999. Jejunal permeability in
humans in vivo and rats in situ: investigation of molecular size selectivity and
solvent drag. Acta Physiol. Scand. 165, 315–324.

agerstrom, P.O., 1984. Pharmacokinetics of terbutaline after parenteral adminis-
tration. Eur. J. Respir. Dis. Suppl. 134, 101–110.

ukunaka, T., Yaegashi, Y., Nunoko, T., Ito, R., Golman, B., Shinohara, K., 2006. Dis-
solution characteristics of cylindrical particles and tablets. Int. J. Pharm. 310,
146–153.

atti, G., Flaherty, J., Bubp, J., White, J., Borin, M.,  Gambertoglio, J., 1993. Comparative
study of bioavailabilities and pharmacokinetics of clindamycin in healthy vol-
unteers and patients with AIDS. Antimicrob. Agents Chemother. 37, 1137–1143.

omez-Lechon, M.J., Donato, M.T., Castell, J.V., Jover, R., 2003. Human hepato-
cytes as a tool for studying toxicity and drug metabolism. Curr. Drug Metab. 4,
292–312.

oodman, L.S., Gilman, A.G., Brunton, L.L., Lazo, J.S., Parker, K.L., 2006. Goodman &
Gilman’s the Pharmacological Basis of Therapeutics, 11th ed. McGraw-Hill, New
York.

oodman, L.S., Limbird, L.E., Milinoff, P.B., Ruddon, R.W., Gilman, A.G., 1996. Good-
man  & Gilman’s the Pharmacological Basis of Therapeutics, 9th ed. McGraw-Hill,
New York.

rass, G.M., 1997. Simulation models to predict oral drug absorption from in vitro
data. Adv. Drug Deliv. Rev. 23, 199–219.

riffin, S.J., Houston, J.B., 2004. Comparison of fresh and cryopreserved rat hepato-
cyte suspensions for the prediction of in vitro intrinsic clearance. Drug Metab.
Dispos. 32, 552–558.

uyton, A.C., Hall, J.E., 1996. Human Physiology and Mechanisms of Disease, 6th ed.
WB  Saunders Co.

eintz, R.C., Guentert, T.W., Enrico, J.F., Dubach, U.C., Brandt, R., Jeunet, F.S., 1984.
Pharmacokinetics of tenoxicam in healthy human volunteers. Eur. J. Rheumatol.
Inflamm. 7, 33–44.

ewitt, N.J., Lechon, M.J., Houston, J.B., Hallifax, D., Brown, H.S., Maurel, P., Kenna,
J.G.,  Gustavsson, L., Lohmann, C., Skonberg, C., Guillouzo, A., Tuschl, G., Li, A.P.,
LeCluyse, E., Groothuis, G.M., Hengstler, J.G., 2007. Primary hepatocytes: current
understanding of the regulation of metabolic enzymes and transporter proteins,
and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme
induction, transporter, clearance, and hepatotoxicity studies. Drug. Metab. Rev.
39,  159–234.

inz, B., Chevts, J., Renner, B., Wuttke, H., Rau, T., Schmidt, A., Szelenyi, I., Brune, K.,
Werner, U., 2005. Bioavailability of diclofenac potassium at low doses. Br. J. Clin.
Pharmacol. 59, 80–84.

ouston, J.B., Carlile, D.J., 1997. Prediction of hepatic clearance from microsomes,
hepatocytes, and liver slices. Drug Metab. Rev. 29, 891–922.

uang, W.,  Lee, S.L., Yu, L.X., 2009. Mechanistic approaches to predicting oral drug
absorption. AAPS J. 11, 217–224.

to, K., Houston, J.B., 2004. Comparison of the use of liver models for predicting
drug clearance using in vitro kinetic data from hepatic microsomes and isolated
hepatocytes. Pharm. Res. 21, 785–792.

to, K., Houston, J.B., 2005. Prediction of human drug clearance from in vitro and
preclinical data using physiologically based and empirical approaches. Pharm.
Res. 22, 103–112.

watsubo, T., Hirota, N., Ooie, T., Suzuki, H., Shimada, N., Chiba, K., Ishizaki, T., Green,
C.E., Tyson, C.A., Sugiyama, Y., 1997. Prediction of in vivo drug metabolism
in  the human liver from in vitro metabolism data. Pharmacol. Ther. 73,
147–171.

acobson, L., Middleton, B., Holmgren, J., Eirefelt, S., Frojd, M., Blomgren, A., Gus-
tavsson, L., 2007. An optimized automated assay for determination of metabolic
stability using hepatocytes: assay validation, variance component analysis, and
in  vivo relevance. Assay Drug Dev. Technol. 5, 403–415.

leberg, K., Jacobsen, J., Mullertz, A., 2010. Characterising the behaviour of poorly
water soluble drugs in the intestine: application of biorelevant media for solu-
bility, dissolution and transport studies. J. Pharm. Pharmacol. 62, 1656–1668.

oppel, C., Tenczer, J., 1985. Metabolism of benzydamine. Arzneimittelforschung 35,
634–635.

au,  Y.Y., Sapidou, E., Cui, X., White, R.E., Cheng, K.C., 2002. Development of a novel
in  vitro model to predict hepatic clearance using fresh, cryopreserved, and
sandwich-cultured hepatocytes. Drug Metab. Dispos. 30, 1446–1454.

ee, S.P., Paxton, J.W., Choong, Y.S., 1986. Plasma and biliary disposition of piren-
zepine in man. Clin. Exp. Pharmacol. Physiol. 13, 241–248.

ennernas, H., 1998. Human intestinal permeability. J. Pharm. Sci. 87, 403–410.
upfert, C., Reichel, A., 2005. Development and application of physiologically based

pharmacokinetic-modeling tools to support drug discovery. Chem. Biodivers. 2,
1462–1486.

ajumdar, A.K., Howard, L., Goldberg, M.R., Hickey, L., Constanzer, M.,  Rothenberg,
P.L., Crumley, T.M., Panebianco, D., Bradstreet, T.E., Bergman, A.J., Waldman, S.A.,
Greenberg, H.E., Butler, K., Knops, A., De Lepeleire, I., Michiels, N., Petty, K.J., 2006.
Pharmacokinetics of aprepitant after single and multiple oral doses in healthy

volunteers. J. Clin. Pharmacol. 46, 291–300.

arciani, L., Foley, S., Hoad, C., Campbell, E., Totman, J., Armstrong, A., Manby, P.,
Gowland, P.A., Spiller, R., 2007. Effects of Ondansetron on small bowel water
content: a magnetic resonance imaging study. In: United European Gastroen-
terology Week (UEGW), Paris.
 Pharmaceutics 429 (2012) 84– 98 97

McGinnity, D.F., Soars, M.G., Urbanowicz, R.A., Riley, R.J., 2004. Evaluation of fresh
and cryopreserved hepatocytes as in vitro drug metabolism tools for the predic-
tion of metabolic clearance. Drug Metabol. Dispos. 32, 1247–1253.

Mikus, G., Fischer, C., Heuer, B., Langen, C., Eichelbaum, M.,  1987. Application of
stable isotope methodology to study the pharmacokinetics, bioavailability and
metabolism of nitrendipine after i.v. and p.o. administration. Br. J. Clin. Pharma-
col. 24, 561–569.

Mithani, S.D., Bakatselou, V., TenHoor, C.N., Dressman, J.B., 1996. Estimation of the
increase in solubility of drugs as a function of bile salt concentration. Pharm.
Res. 13, 163–167.

Naritomi, Y., Terashita, S., Kagayama, A., Sugiyama, Y., 2003. Utility of hepatocytes
in  predicting drug metabolism: comparison of hepatic intrinsic clearance in rats
and  humans in vivo and in vitro. Drug Metab. Dispos. 31, 580–588.

Neugebauer, G., Betzien, G., Hrstka, V., Kaufmann, B., von Mollendorff, E., Abshagen,
U.,  1985. Absolute bioavailability and bioequivalence of glibenclamide (Semi-
EugluconN). Int. J. Clin. Pharmacol. Ther. Toxicol. 23, 453–460.

Norris, D.A., Leesman, G.D., Sinko, P.J., Grass, G.M., 2000. Development of predictive
pharmacokinetic simulation models for drug discovery. J. Controlled Release 65,
55–62.

Nyberg, L., 1984. Pharmacokinetic parameters of terbutaline in healthy man. An
overview. Eur. J. Respir. Dis. Suppl. 134, 149–160.

Obach, R.S., 1999. Prediction of human clearance of twenty-nine drugs from
hepatic microsomal intrinsic clearance data: an examination of in vitro half-
life approach and nonspecific binding to microsomes. Drug Metab. Dispos. 27,
1350–1359.

Paixao, P., Gouveia, L.F., Morais, J.A., 2009. Prediction of drug distribution within
blood. Eur. J. Pharm. Sci. 36, 544–554.

Paixao, P., Gouveia, L.F., Morais, J.A., 2010a. Prediction of the in vitro intrinsic clear-
ance determined in suspensions of human hepatocytes by using artificial neural
networks. Eur. J. Pharm. Sci. 39, 310–321.

Paixao, P., Gouveia, L.F., Morais, J.A., 2010b. Prediction of the in vitro permeability
determined in Caco-2 cells by using artificial neural networks. Eur. J. Pharm. Sci.
41,  107–117.

Palm, K., Luthman, K., Ungell, A.L., Strandlund, G., Artursson, P., 1996. Correlation of
drug absorption with molecular surface properties. J. Pharm. Sci. 85, 32–39.

Parrott, N., Lave, T., 2002. Prediction of intestinal absorption: comparative assess-
ment of GASTROPLUS and IDEA. Eur. J. Pharm. Sci. 17, 51–61.

Parrott, N., Lave, T., 2008. Applications of physiologically based absorption models
in drug discovery and development. Mol. Pharm. 5, 760–775.

Parrott, N., Paquereau, N., Coassolo, P., Lave, T., 2005. An evaluation of the utility
of  physiologically based models of pharmacokinetics in early drug discovery. J.
Pharm. Sci. 94, 2327–2343.

Poulin, P., Theil, F.P., 2000. A priori prediction of tissue:plasma partition coefficients
of  drugs to facilitate the use of physiologically-based pharmacokinetic models
in  drug discovery. J. Pharm. Sci. 89, 16–35.

Putcha, L., Cintron, N.M., Tsui, J., Vanderploeg, J.M., Kramer, W.G., 1989. Pharmacoki-
netics and oral bioavailability of scopolamine in normal subjects. Pharm. Res. 6,
481–485.

Raaflaub, J., 1975. On the pharmacokinetics of chlorprothixene in man. Experientia
31, 557–558.

Raaflaub, J., Dubach, U.C., 1975. On the pharmacokinetics of phenacetin in man. Eur.
J.  Clin. Pharmacol. 8, 261–265.

Reddy, A., Heimbach, T., Freiwald, S., Smith, D., Winters, R., Michael, S., Surendran,
N.,  Cai, H., 2005. Validation of a semi-automated human hepatocyte assay for
the  determination and prediction of intrinsic clearance in discovery. J. Pharm.
Biomed. Anal. 37, 319–326.

Rimmer, E.M., Routledge, P.A., Tsanaclis, L.M., Richens, A., 1986. Pharmacokinetics
of  antipyrine in epileptic patients. Br. J. Clin. Pharmacol. 21, 511–514.

Rinaki, E., Valsami, G., Macheras, P., 2003. Quantitative biopharmaceutics classifica-
tion  system: the central role of dose/solubility ratio. Pharm. Res. 20, 1917–1925.

Ritschel, W.A., 2000. Handbook of Basic Pharmacokinetics, 5th ed. Drug Intelligence
Publications Inc., Hamilton.

Rowland, M.,  Benet, L.Z., Graham, G.G., 1973. Clearance concepts in pharmacokinet-
ics. J. Pharmacokinet. Biopharm. 1, 123–136.

Rowland, M.,  Peck, C., Tucker, G., 2011. Physiologically-based pharmacokinetics in
drug development and regulatory science. Annu. Rev. Pharmacol. Toxicol. 51,
45–73.

Saxena, V., Panicucci, R., Joshi, Y., Garad, S., 2009. Developability assessment in phar-
maceutical industry: an integrated group approach for selecting developable
candidates. J. Pharm. Sci. 98, 1962–1979.

Sheikh-Bahaei, S., Hunt, C.A., 2011. Enabling clearance predictions to emerge from
in  silico actions of quasi-autonomous hepatocyte components. Drug Metab. Dis-
pos. 39, 1910–1920.

Singh, S.S., 2006. Preclinical pharmacokinetics: an approach towards safer and effi-
cacious drugs. Curr. Drug Metab. 7, 165–182.

Smith, D.E., Lin, E.T., Benet, L.Z., 1980. Absorption and disposition of furosemide
in  healthy volunteers, measured with a metabolite-specific assay. Drug Metab.
Dispos. 8, 337–342.

Sohlenius-Sternbeck, A.K., Afzelius, L., Prusis, P., Neelissen, J., Hoogstraate, J.,
Johansson, J., Floby, E., Bengtsson, A., Gissberg, O., Sternbeck, J., Petersson,
C., 2010. Evaluation of the human prediction of clearance from hepatocyte

and microsome intrinsic clearance for 52 drug compounds. Xenobiotica 40,
637–649.

Stenberg, P., Norinder, U., Luthman, K., Artursson, P., 2001. Experimental and com-
putational screening models for the prediction of intestinal drug absorption. J.
Med. Chem. 44, 1927–1937.



9 nal of 

S

S

T

T

T

V

V

V

V

V

W

8 P. Paixão et al. / International Jour

ugano, K., 2009. Computational oral absorption simulation for low-solubility com-
pounds. Chem. Biodivers. 6, 2014–2029.

un, D., Lennernas, H., Welage, L.S., Barnett, J.L., Landowski, C.P., Foster, D., Fleisher,
D.,  Lee, K.D., Amidon, G.L., 2002. Comparison of human duodenum and Caco-2
gene expression profiles for 12,000 gene sequences tags and correlation with
permeability of 26 drugs. Pharm. Res. 19, 1400–1416.

akagi, T., Ramachandran, C., Bermejo, M.,  Yamashita, S., Yu, L.X., Amidon, G.L.,
2006. A provisional biopharmaceutical classification of the top 200 oral drug
products in the United States, Great Britain, Spain, and Japan. Mol. Pharm. 3,
631–643.

akano, R., Sugano, K., Higashida, A., Hayashi, Y., Machida, M.,  Aso, Y., Yamashita,
S.,  2006. Oral absorption of poorly water-soluble drugs: computer simulation of
fraction absorbed in humans from a miniscale dissolution test. Pharm. Res. 23,
1144–1156.

heil, F.P., Guentert, T.W., Haddad, S., Poulin, P., 2003. Utility of physiologically based
pharmacokinetic models to drug development and rational drug discovery can-
didate selection. Toxicol. Lett. 138, 29–49.

ander, A.J., Sherman, J.H., Luciano, D.S., 2000. Human Physiology. The Mechanisms
of  Body Functions, 8th ed. McGraw-Hill.

enkatesh, S., Lipper, R.A., 2000. Role of the development scientist in compound lead
selection and optimization. J. Pharm. Sci. 89, 145–154.

ereczkey, L., Czira, G., Tamas, J., Szentirmay, Z., Botar, Z., Szporny, L.,
1979. Pharmacokinetics of vinpocetine in humans. Arzneimittelforschung 29,
957–960.

ergin, H., Mascher, H., Strobel, K., Nitsche, V., 1986. Pharmacokinetics and bioe-
quivalence of different formulations of pirenzepine. Arzneimittelforschung 36,
1409–1412.

ogel, H.G., 2006. Drug Discovery and Evaluation – Safety and Pharmacokinetic

Assays. Springer-Verlag, Berlin.

an, H., Bold, P., Larsson, L.O., Ulander, J., Peters, S., Lofberg, B., Ungell, A.L.,
Nagard, M.,  Llinas, A., 2010. Impact of input parameters on the prediction of
hepatic plasma clearance using the well-stirred model. Curr. Drug Metab. 11,
583–594.
Pharmaceutics 429 (2012) 84– 98

Weber, C., Gasser, R., Hopfgartner, G., 1999. Absorption, excretion, and metabolism
of the endothelin receptor antagonist bosentan in healthy male subjects. Drug
Metab. Dispos. 27, 810–815.

Wiedmann, T.S., Kamel, L., 2002. Examination of the solubilization of drugs by bile
salt  micelles. J. Pharm. Sci. 91, 1743–1764.

Wiedmann, T.S., Liang, W.,  Kamel, L., 2002. Solubilization of drugs by physiological
mixtures of bile salts. Pharm. Res. 19, 1203–1208.

Wiesel, F.A., Alfredsson, G., Ehrnebo, M.,  Sedvall, G., 1980. The pharmacokinetics of
intravenous and oral sulpiride in healthy human subjects. Eur. J. Clin. Pharmacol.
17,  385–391.

Willmann, S., Schmitt, W.,  Keldenich, J., Lippert, J., Dressman, J.B., 2004. A physiolog-
ical model for the estimation of the fraction dose absorbed in humans. J. Med.
Chem. 47, 4022–4031.

Wilson, Z.E., Rostami-Hodjegan, A., Burn, J.L., Tooley, A., Boyle, J., Ellis, S.W., Tucker,
G.T., 2003. Inter-individual variability in levels of human microsomal protein
and  hepatocellularity per gram of liver. Br. J. Clin. Pharmacol. 56, 433–440.

Yoshida, F., Topliss, J.G., 2000. QSAR model for drug human oral bioavailability. J.
Med. Chem. 43, 2575–2585.

Yu, L.X., 1999. An integrated model for determining causes of poor oral drug absorp-
tion. Pharm. Res. 16, 1883–1887.

Yu, L.X., Amidon, G.L., 1998. Saturable small intestinal drug absorption in humans:
modeling and interpretation of cefatrizine data. Eur. J. Pharm. Biopharm. 45,
199–203.

Yu,  L.X., Amidon, G.L., 1999. A compartmental absorption and transit model for
estimating oral drug absorption. Int. J. Pharm. 186, 119–125.

Yu,  L.X., Crison, J.R., Amidon, G.L., 1996a. Compartmental transit and dispersion
model analysis of small intestinal transit flow in humans. Int. J. Pharm. 140,
111–118.
Yu,  L.X., Lipka, E., Crison, J.R., Amidon, G.L., 1996b. Transport approaches to the bio-
pharmaceutical design of oral drug delivery systems: prediction of intestinal
absorption. Adv. Drug Deliv. Rev. 19, 359–376.

Yu, M.J., 2010. Predicting total clearance in humans from chemical structure. J. Chem.
Inf. Model. 50, 1284–1295.


	Prediction of the human oral bioavailability by using in vitro and in silico drug related parameters in a physiologically ...
	1 Introduction
	2 Materials and methods
	2.1 Model structure
	2.2 Physiological parameters
	2.3 Drug related parameters
	2.4 Si, Papp and Clint datasets
	2.5 Statistical and pharmacokinetic analysis

	3 Results
	3.1 Prediction using in vitro data
	3.2 Prediction using in silico Papp Caco-2 values
	3.3 Prediction using in silico Clint hepatocytes values
	3.4 Prediction using in silico data

	4 Discussion
	4.1 Model structure
	4.2 Drug parameters
	4.3 Model performance

	5 Conclusions
	Acknowledgment
	References


